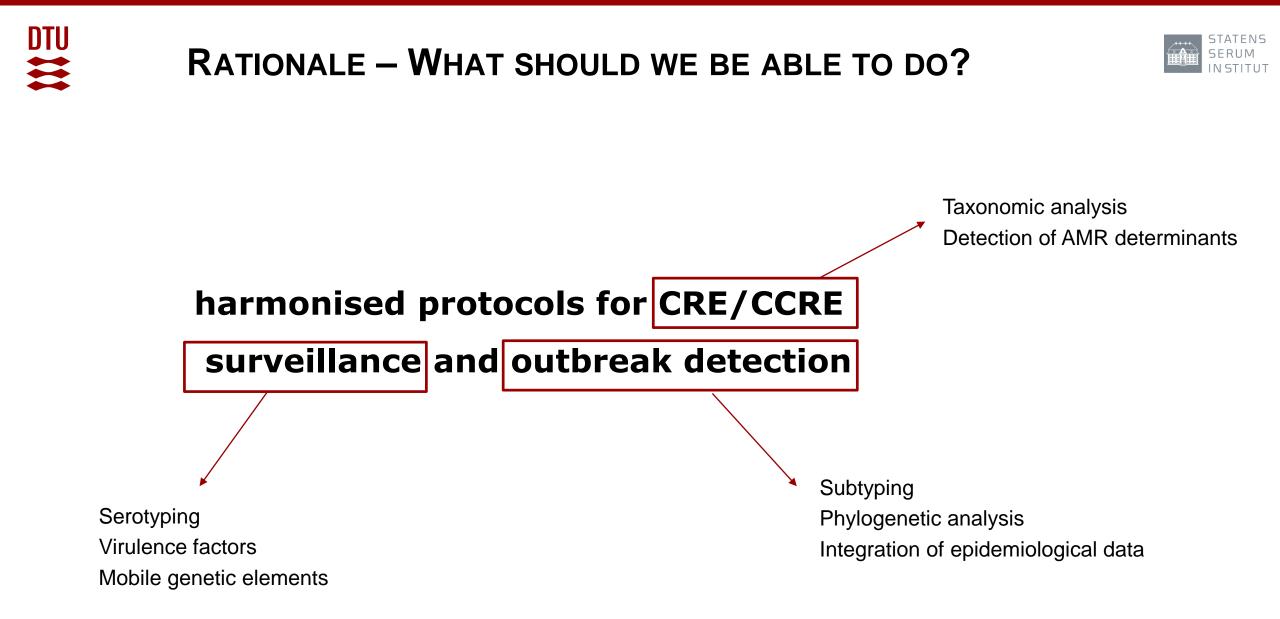


Ana Rita Rebelo anrire@food.dtu.dk

Recommendations and proposals to develop harmonised protocols for CRE/CCRE surveillance and outbreak detection

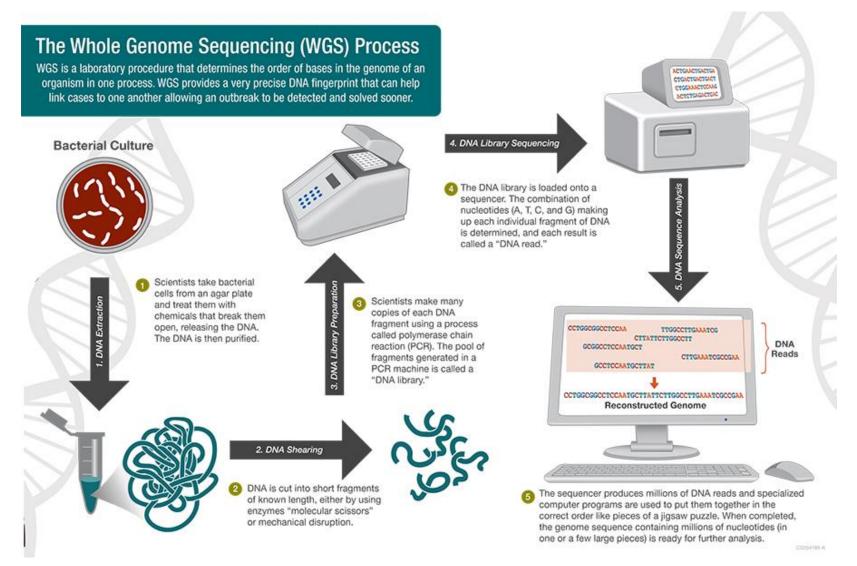
RATIONALE – WHY WGS?


Advantages

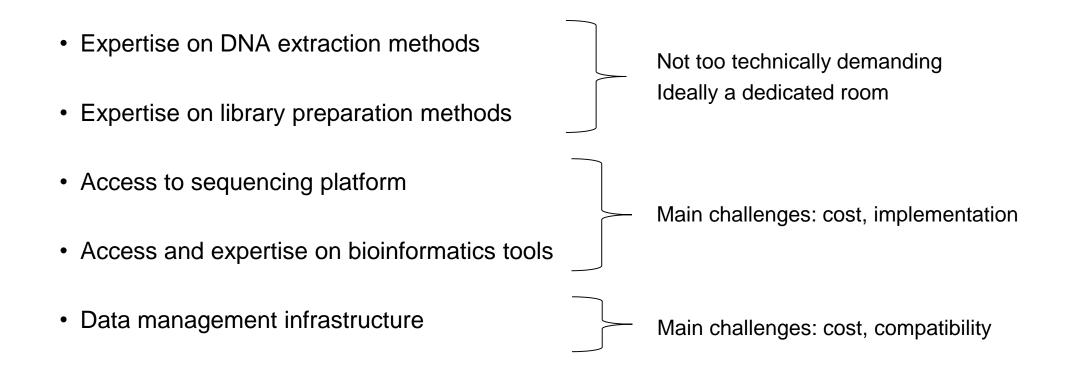
- Only one protocol
- Very large amount of data
- Higher discriminatory power
- Harmonised and automatic analysis
- Direct comparison
- Ease of storage
- Retroactive screening

Why now?

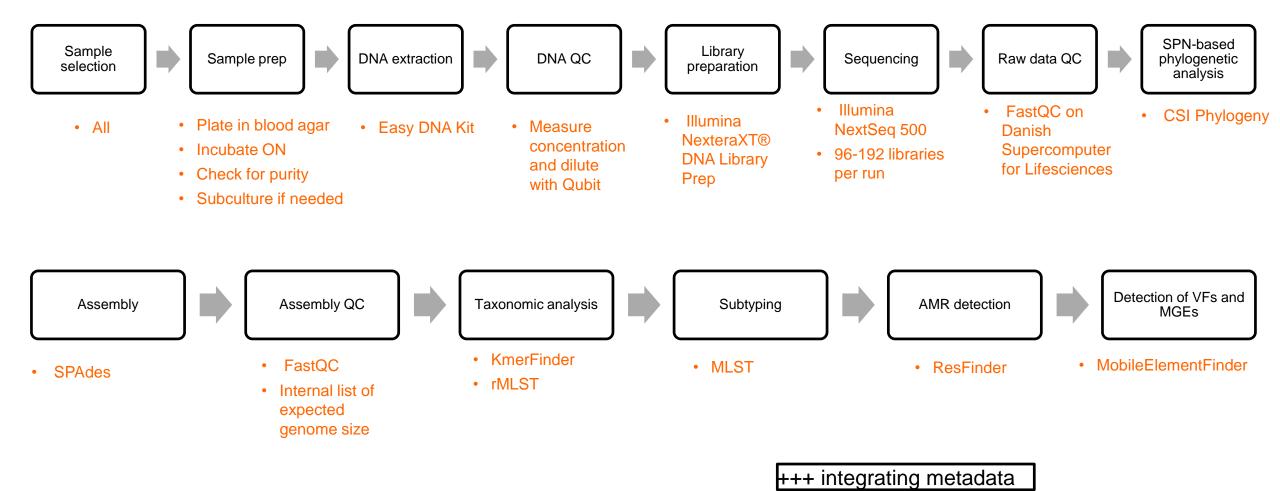
- Increase in sequencing accuracy
- Decrease in cost
- Coordinated efforts throughout Europe



WGS-BASED ANALYSIS OF BACTERIA - OVERVIEW


https://www.cdc.gov/pulsenet/pathogens/protocol-images.html#wgs

WGS-BASED ANALYSIS OF BACTERIA - REQUIREMENTS



DTU

EXAMPLE: A COMPLETE WGS WORKFLOW

NOT THAT SIMPLE – TOO MANY OPTIONS

Tool	Reference database	Description and output			
Tools for taxonomic analysis and typing					
KmerFinder [150,151]	KmerFinder	Provides hits of the query genome against whole reference genomes, the respective % of identity and % of coverage			
SILVA [152]	SILVA	Collection of 16S rRNA genes, also possible to perform phylogenetic analysis and obtain phylogenetic trees			
MLST [153]	PubMLST	MLST schemes, provides the sequence type			
rMLST [126]	rMLST	rMLST schemes, provides the predicted species and respective allelic support metric			
SerotypeFinder [154]	SerotypeFinder	Serotype, specific for E. coli			
SeqSero [PneumoC Tools for cgMLST [CSIPhylog Evergreer		be used exclusively for typing but also clustering through FastTree			
Tools for detection of antimicrobial resistance determinants					
ResFinder [129]	ResFinder, PointFinder	Provides hits against reference ARGs and PMs and the respective % of identity and % of coverage, position in genome and predicted phenotype			
KmerResistance [150,151]	KmerResistance	Provides hits of the query genome against reference genomes, as well as the detected ARGs and respective % of identity and % of coverage			
CARD/RGI [158]	CARD	Provides hits against reference ARGs and respective % of identity and % of coverage. Other options are possible and the service is highly focused on ontology and standardization			
AMRFinder [159]; AMRFinderPlus [160]	NCBI RefSeq	Provides hits against reference ARGs and respective % of identity and % of coverage			
ARIBA [161]	CARD, ResFinder, NCBI Bacterial AMR Reference Gene DB, ARG-ANNOT, MEGARes, PubMLST, others defined by user	Provides hits against reference ARGs and respective % of identity and % of coverage			
Tools for detection of virulence factors					
VirulenceFinder [162]	VirulenceFinder				
Victors [131]	Victors	and just from tools for analysis			
Tools for detection and analysis of mobile genetic ele					
PlasmidFinder [163]	PlasmidFinder				
Platon [164]	Platon	r rovides mits against reference plasmids and respective 70 or reentity and 70 or coverage, as well as relevant genes			
pMLST [153]	PubMLST	Plasmid typing schemes			
MobileElementFinder [135]	MobileElementFinder	Provides type and reference sequences of MGEs, respective % of identity and % of coverage, as well as associated ARGs and VFs			
Pipelines for extensive analyses					
NCBI Pathogen Detection	NCBI DBs	Detects ARGs and VFs, provides SNP-based phylogenetic analysis			
Pathogenwatch [165]	Pathogenwatch, tools' DBs	Performs taxonomic analysis, determines MLST and cgMLST and provides cgMLST-based phylogenetic clustering			
BIGSdb [166]	PubMLST BIGSdb	Performs annotation and taxonomic analysis, detects ARGs and plasmids, determines MLST, rMLST and cgMLST, provides phylogenetic and spatio-phylogenetic analysis			
PATRIC [167]	PATRIC, but also includes others such as CARD, NDARO and VEDV	Performs assemblies, quality control, annotation and taxonomic analysis, detects ARGs and performs phenotype prediction, detects VFs and MGEs, provides phylogenetic analysis, variation analysis and genome alignments			
EURGen-RefLabCap Network Meeting 2021	– 2 December	Funded by the European Union			

- i. Accounting for future priority pathogens and priority AMR profiles for surveillance.
- ii. Choose well defined AMR genotypes for validation of the WGS approach.
- iii. Establish the control parameters to be used.
- iv. Establish the thresholds for the control parameters.
- v. Define a set of bioinformatics tools and databases as potential candidates to be included in the harmonised approach.
- vi. Consider the results of other tasks incurred in the context of this project.

Accounting for future priority pathogens and priority AMR profiles for surveillance.

MAIN OBJECTIVE: the harmonised WGS approach is streamlined for surveillance and analyses of CRE/CCRE bacteria

BUT: should already account for the future integration of two additional epidemic-prone healthcare-associated antimicrobial-resistant bacterial pathogens of public health priority

BECAUSE: current European guidelines and Commission Implementing Decisions might at any time be reviewed if new epidemiological situations become established, changing the scope of organisms under surveillance **AND:** we should avoid working in silos

EXAMPLES:

• selection of ARG databases that contain ARGs and point mutations for other microorganisms besides CRE/CCRE

• defining QC parameters at are not exclusive to *Enterobacterales*

establishing the acceptable genome size deviation as a percentage of the expected genome size, and not as a numerical deviation from the expected 5 million base-pairs.

RECOMMENDATION 2

Choose well defined AMR genotypes for validation of the WGS approach.

MAIN OBJECTIVE: Predict AMR phenotypes (which are often regulated by a combination of several genotypic determinants)

BUT: many of the genetic mechanisms are currently not well defined and prove difficult to be detected through WGS approaches

SOLUTION: Defining a subset of well-studied ARGs and point mutations allows for comparison of sampling methods, laboratory protocols and bioinformatics workflows

EXAMPLE: Adequately dectecting *mcr*-genes in colistin-resistant *Enterobacterales* could correspond to the benchmark indicating an adequate approach, even knowing that other mechanisms of resistance (e.g. PMs) exist

Establish the control parameters to be used.

Establish the thresholds for the control parameters.

Many different:

- DNA extraction kits
- Sequencing platforms
- Bioinformatics approaches
- Bioinformatics tools

Is harmonization feasible?

Well defined set of QC parameters

- For the raw data

E.g. nr. and length of raw reads, depth of coverage

- For the assembled genomes

E.g. N50, nr. of contigs, genome size

- For the performance of the tools

E.g. accurately detect PMs and ARGs in sets of benchmarking data

We propose two sets of QC parameters that will allow the users to maintain flexibility in their choice of WGS platform and bioinformatics tools:

- Sequencing QC parameters
- Data management QC parameters

Sequencing QC parameters:

any sequencing platform, protocol and bioinformatics tool

raw data and assembled genomes with quality equal or above limited thresholds for defined control parameters

Current general consensus:

- "number and length of raw reads"
- "depth of coverage"
- "number of contigs in the assembled genome"
- "N50 and deviation from expected genome size"

Sequencing QC parameters:

the depth of coverage (both of the raw data and also of the assembled genome) should be at least of 30 times (30X)
15X has proven sufficient to an adequate detection of ARGs and point mutations in E. coli

 the number of contigs in the assembled genome must be lower than 1,000, and ideally lower than 500 short-read technologies

 the size of the assembled genome is dependent on the target species. To account for genome plasticity and mobile genetic elements we suggest that a maximum threshold of 10% of variation in the number of base-pairs (BPs) should be adopted.

CRE/CCRE: genome size 5 million BPs = a variation of plus/minus 0.5 million BPs would be acceptable

Data management QC parameters:

Ensure that all workflows respect the same data management directions and there is:

- -traceability of data and methods
- -compatibility of data types and formats between different bioinformatics approaches
- -comparability of results between settings

Data management QC parameters:

Parameters:

?

ISO standard will soon become available and help guide us

Examples from ISO draft:

- o defining the minimum metadata requirements and respective adequate descriptors
- describing the proper <u>registry methods</u> for the DNA extraction and sequencing protocols, WGS platforms and bioinformatics analyses.

BENCHMARKING DATASETS

Data management QC parameters:

European Commission's Joint Research Centre

2018: "The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies"

2021: "A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing"

• Benchmarking approaches to validate sequencing and bioinformatics workflows

• Ensure that different pipelines can be used while at the same time adhering to the same minimum standards of performance

HOW?

o creating platform-specific validation datasets

o using simulated data that complies with specific certifications (not biases towards the creating platform)

o accepting the *fastq* format as the standardized input for analysing the performance of bioinformatics tools

• accuracy should be dependent on the ability of the workflow to identify the correct AMR determinants that are introduced in the dataset (and not on agreement with phenotypic results)

o these AMR determinants should include species and mechanisms which are selected based on international priority lists

RECOMMENDATION 5

Define a set of bioinformatics tools and databases as potential candidates to be included in the harmonised approach.

BIOINFORMATICS TOOLS - OVERVIEW

Purpose

Quality control Assembly Taxonomic analysis Phylogeny Serotyping/Subtyping Detection of AMR determinants Detection of other determinants

Accessibility

Web-based Command line Local vs. server

Data

Raw data as input Assemblies as input Integration of metadata

Maintenance

Benchmarked

Curated

Cost

Open access Subscription

EXAMPLE: BIOINFORMATICS TOOLS FOR PREDICTION OF AMR

ΤοοΙ	Target species	Reference database	Output	Comments
SRST2	All	CARD, PubMLST, or others defined by user	Reference sequences and respective % of coverage, depth	Also taxonomy, phylogeny, VFs, plasmids, other, depending on provided databases
ARIBA	All	CARD, ResFinder, ARG- ANNOT, MEGARes, NCBI Bacterial AMR Reference Gene Database, PubMLST, or others defined by user	Reference sequences and respective % of identity, % of coverage	Also phylogeny, VFs and plasmids, depending on provided databases (such as plasmidfinder, VFDB, VirulenceFinder)
KmerResistance	All	Own	Reference genomes, ARGs and respective % of identity, % of coverage	Also taxonomy
ResFinder	All	Own	ARGs and respective % of identity, % of coverage, position in genome, predicted phenotype	NA
PointFinder	(Limited)	Own	Mutated gene, protein translation, predicted phenotype	Included in ResFinder but can be used locally by itself. Currently under development for Klebsiella spp.
RGI	All	CARD	Reference sequences and respective % of identity, % of coverage, other options	Integrated in the Galaxy server; allows proteome analysis
AMRFinder; AMRFinderPlus	All (Limited PMs)	NCBI RefSeq	Reference sequences and respective % of identity, % of coverage	Included in NCBI Pathogen Detection
SSTAR	All	Own (created by merging Res Finder and ARG -ANNOT)	Reference sequences and respective % of coverage, depth	Can be used with other reference databases
ABRicate	All	CARD, ResFinder, ARG- ANNOT, MEGARES, NCBI AMRFinderPlus, or others defined by user	Reference sequences and respective % of identity, % of coverage	Also VFs and plasmids, depending on provided databases Also VFs and plasmids, depending on provided databases (such as plasmidfinder and VFDB)
CARD	All	Own	ARGs and point mutations, respective prevalence and predicted phenotype	Highly focused on ontology and standardization. VFs and mobile genetic elements currently being added

EXAMPLE: BIOINFORMATICS PIPELINES FOR PREDICTION OF AMR

ΤοοΙ	Target species	Reference database	Output
Pathogenwatch	Limited	Own, tools' databases	Taxonomy, MLST, cgMLST and clustering. Other functionalities for Klebsiella spp. derived from Kleborate
Enterobase	Limited	Tools' databases	Genome assembly and annotation, serotyping, MLST, cgMLST, rMLST, phylogenetic analysis
BIGSdb	All	PubMLST BIGSdb	Annotation, taxonomy, ARGs, plasmids, MLST, rMLST, cgMLST, phylogenetic and spatio-phylogenetic analysis, comparative genomics
NCBI Pathogen Detection	Limited	Own	ARGs, VFs, SNP-based phylogenetic analysis
PATRIC	All	Own, but also includes others such as CARD, NDARO and VFDV	Assemblies, QC, annotation, taxonomy, ARGs, phenotype prediction, VFs, mobile elements, phylogenetic analysis, variation analysis, genome alignments, comparative genomics, other options
Ridom SeqSphere+ 🗧 🧲	All	Own, tools' databases; Includes NCBI AMRFinder and VFDB	Assemblies, QC, taxonomy, ARGs, VFs, MLST, cgMLST, phylogenetic analysis
Bionumerics	All (wgMLST schemes available for limited species)	Own, tools' databases, others provided by user	Assemblies, QC, annotation, taxonomy, ARGs, plasmids, MLST, rMLST, cgMLST, wgMLST, phylogenetic analysis, comparative genomics, other options for E. coli (ARGs, PMs, VFs, plasmids, serotypes)

o should be **<u>open-access</u>**, in order to respect probable budget limitations of certain users

 should be available as <u>online interfaces</u> (or be part of other interfaces) to avoid the need for expensive computing resources and specific professionals

o should also be **<u>downloadable for local</u>** usage for users with the resources and interest in doing so

o should be **<u>benchmarked</u>**, and should be transparently and continuously **<u>curated</u>**

 The owners should be available for <u>collaboration</u> with the European Commission, ECDC, and this provider to facilitate implementation and testing, and to potentially coordinate events such as suspension of updates during External Quality Assessments, and to provide scientific and technical support to the users

RECOMMENDATION 6

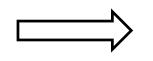
Consider the results of other tasks incurred in the context of this project.

○ WGS approaches currently used by the NRLs

o minimum conflict as possible with the ones currently used

Some considerations

There's no one-size-fits-all approach There's no perfect bioinformatics tool


Essential requirements:

QC Benchmarking datasets

Ensuring accuracy of your approach

Knowing which database supports each tool Understanding how the tool works

Knowing what data to provide Knowing the limitations of your results

Input from NRLs with established WGS workflows

Positive and negative feedback regarding their specific approaches Challenges so far

Input from NRLs with no-established systems

What part of the whole WGS workflow seems more demanding? Specific fears (e.g. command-line seems too difficult)

To be discussed in break-out session \rightarrow Very important comments now

anrire@food.dtu.dk

Thank you!

