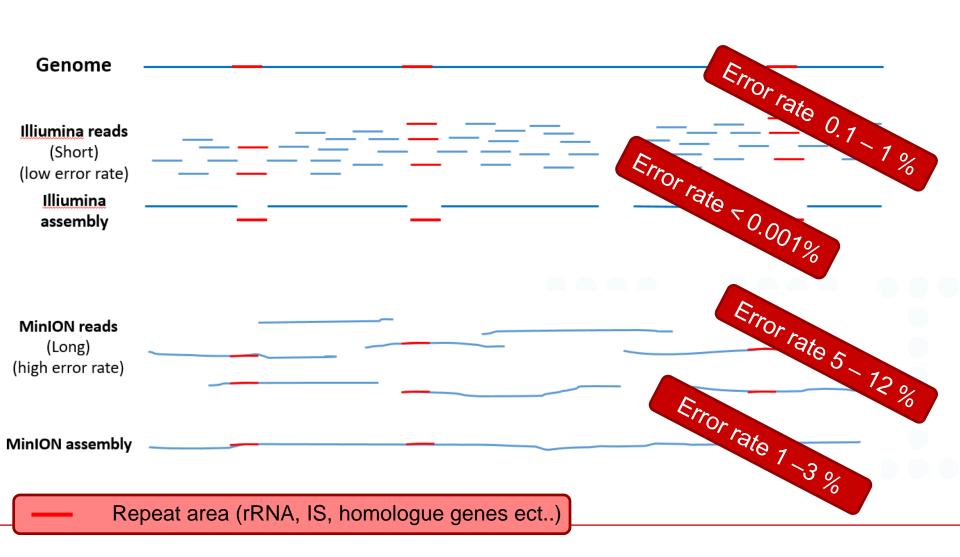


MINTYPER TO ANALYSE ONT (MINION) DATA

Senior scientist
HENRIK HASMAN
Statens Serum Institut (SSI)
Denmark

MINION – THE NEW(ISH) KID ON THE BLOCK

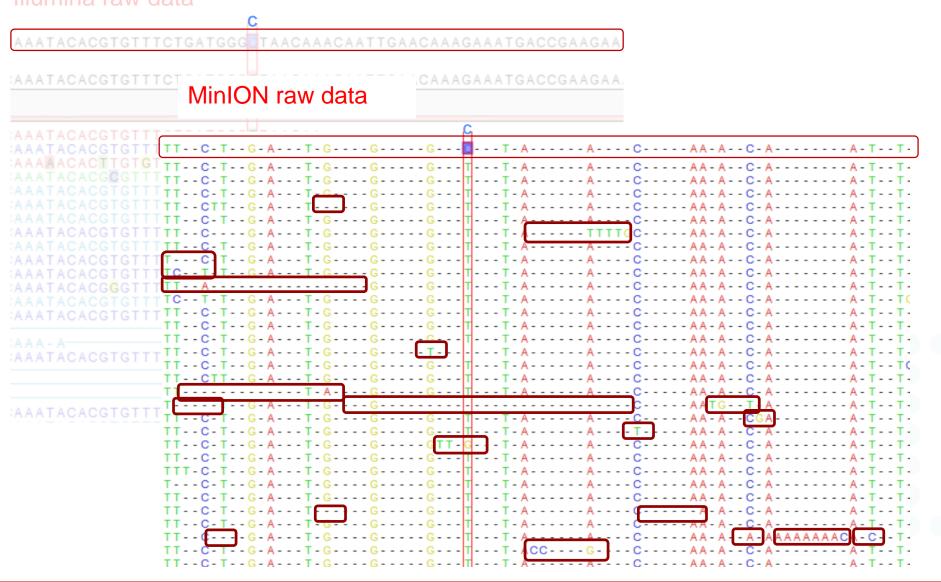
Relatively...


- well-proven tectorion gy
 high precisit detay error rate)
 Slow (chareal aing on the setup)
 ..but provides in real-time

- Low-to medium on per isolate
 experiment execution per isolate
 low pre at a (high error rate)
 fast utore adds available in real-time

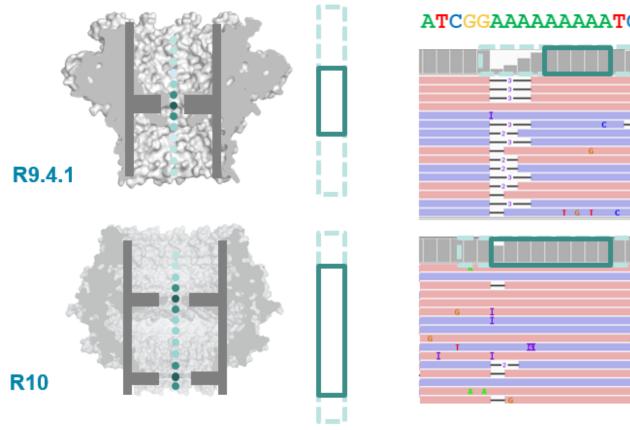
ILLUMINA VS MINION (R9.4.1) DATA

ILLUMINA VS MINION DATA


Illumina raw data

		<u> </u>
AAATACACGTGTT	TCTGATGGG	TAACAAACAATTGAACAAAGAAATGACCGAAGAA
AAATACACGTGTT	TCTGATGGG	TTAACAAACAATTGAACAAAGAAATGACCGAAGAA
AAATACACGTGTT AAATACACGTGTT	TOTGATGKG TOTGATGGG	TTAACAAACAATTGAACAAAGAAATGACCRAAGAA TTAACAAACAAGTGAACAAAGAAATGACCGAAGAA TTAACAAACAATTGAACAAAGAAATGACCGAAGGA TTAACAAACAATTGAACAAAGAAATGACCGAAGGA TTAACAAACAATTGAACAAAGAAATGACCGAAGAA TTAACAAACAATTGAACAAAGAAATGACCGAAGAA TTAACAAACAATTGAACAAAGAAATGACCGAAGAA TTAACAAACAATTGAACAAAGAAATGACCGAAGAA TTAACAAACAATTGAACAAAGAAATGACCGAAGAA
A A A - A	TCTGATGGG	TTAACAAACAATTGAACAAAGAAATGACCGAAGAA

ILLUMINA VS MINION DATA



Illumina raw data

R9.4.1 VS R10.4.1 PORE

ATCGGAAAAAAAATCACGCCACGTCCAAA

CHOICE OF FLOWCELL / PORE

1	Oxford Nanopore R10.4 long-read sequencing enables near-perfect
_	

2 bacterial genomes from pure cultures and metagenomes without

3 short-read or reference polishing

- 4 Mantas Sereika**, Rasmus Hansen Kirkegaard*, Søren Michael Karst*, Thomas Yssing
- 5 Michaelsen^a, Emil Aarre Sørensen^a, Rasmus Dam Wollenberg^a and Mads Albertsen^a
- 6 aCenter for microbial communities, Aalborg University, Denmark
- 7 bJoint Microbiome Facility, University of Vienna, Austria
- 8 DNASense ApS, Denmark
- 9 *These authors contributed equally to the paper
- 10 **Corresponding author ma@bio.aau.dk

20	0.01000
19	0.01259
18	0.01585
17	0.01995
16	0.02512
15	0.03162
14	0.03981
13	0.05012
12	0.06310
11	0.07943
10	0.10000
9	0.12589
8	0.15849
7	0.19953
6	0.25119
5	0.31623
4	0.39811
3	0.50119
2	0.63096
1	0.79433

https://www.biorxiv.org/content/10.1101/2021.10.27.466057v2

THE MINTYPER TOOL AT CGE

Center for Genomic Epidemiology Home Services Instructions Output Article abstract MINTyper 1.0 SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

- Will only accept raw data (Illumina and ONT)
- Will fail if not all input data (strains) cover at least 50% of the reference
- Allow for the use to give her own reference genome (fasta format)
- Allow to filter out Dcm methylation signals, which may give issues with the fast basecaller (at least in old versions of Guppy).
- Exists as a command-line tool (<u>genomicepidemiology / mintyper Bitbucket</u>).

Center for Genomic Epidemiology

Home Services Instructions Output Article abstract

MINTyper 1.0

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

* For large datasets (>100 isolates), consider running the analysis locally, as uploading large quantities of data to the webserver may be troublesome. For a local installation of MINTyper, please see https://bitbucket.org/genomicepidemiology/mintyper

View the version history of this server.

Single reference of your choosing

10

Natar Harman and Harata abanca a Variation Decrease and Charlet	
Note: If you would like to choose a Vælg fil Der er ingen fil valgt	
Select the host database	Г
Bacteria organisms (KmerFinder DB)	L
	L
Motif masking	ı
No masking \checkmark	ı
	L
Prune significance	L
Significant calls only	L
	ı
	L,
Pruning length:	ı
The pruning length should be non-negative - the default is 10	ı
10	L
	ı
Cluster length:	
Maximum SNP distance to determine if two isolates belongs to the sa	-

- MinTyper can search (a now a bit outdated version of) the NCBI RefSeq genome database (KmerFinder DB) for the best reference.
- You can also upload your own reference (e.g. a draft genome of what you think is your index isolate).

Center for Genomic Epidemiology

Home Services Instructions Output Article abstract

MINTyper 1.0

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

* For large datasets (>100 isolates), consider running the analysis locally, as uploading large quantities of data to the webserver may be troublesome. For a local installation of MINTyper, please see https://bitbucket.org/genomicepidemiology/mintyper

View the version history of this server.

CIDA	A PA	toronco	^ t 1	/Allr A	hoosing
JIIIU		ciciice	OI 1	voui c	HOOSIHI

Note: If you would like to choose a Vælg fil Der er ingen fil valgt

Select the host database	
Bacteria organisms (KmerFinder DB)	~
Motif masking	
No masking	
Prune significance	
Significant calls only	~
Bruning langth.	
Pruning length:	
The pruning length should be non-negative	- the default is 10

- Choose no masking if you have Illumina data and/or MinION data, which has been basecalled to correct for Dcm methylation.
- If your Illumina data and MinION data of the same strain does not allign in the analysis, try to apply the "DCM masking option"

Cluster length:

10

Maximum SNP distance to determine if two isolates belongs to the same cluster.

10

Center for Genomic Epidemiology

Home Services Instructions Output Article abstract

MINTyper 1.0

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

* For large datasets (>100 isolates), consider running the analysis locally, as uploading large quantities of data to the webserver may be troublesome. For a local installation of MINTyper, please see https://bitbucket.org/genomicepidemiology/mintyper

View the <u>version history</u> of this server.

Single reference of your choosing

- Significant calls are HQ SNPs
- Insignificant calls include more ambiguous calls (not advised).

Cluster length:

Maximum SNP distance to determine if two isolates belongs to the same cluster.

10

Center for Genomic Epidemiology

Home	Services	Instructions	Output	Article abstract
MINTyper 1.0				

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

* For large datasets (>100 isolates), consider running the analysis locally, as uploading large quantities of data to the webserver may be troublesome. For a local installation of MINTyper, please see https://bitbucket.org/genomicepidemiology/mintyper

View the <u>version history</u> of this server.
Single reference of your choosing Note: If you would like to choose a Vælg fil Der er ingen fil valgt
Select the host database Bacteria organisms (KmerFinder DB)
Motif masking No masking ✓
Prune significance Significant calls only
Significant date only

The pruning length s	hould be non-negative - the default is 10	
10	—	
Cluster lengths		

- Select pruning distance.
- Use default or perhaps 100 bp.

Cluster length

Pruning length:

Maximum SNP distance to determine if two isolates belongs to the same cluster.

10

Center for Genomic Epidemiology

Home Services Instructions Output Article abstract

MINTyper 1.0

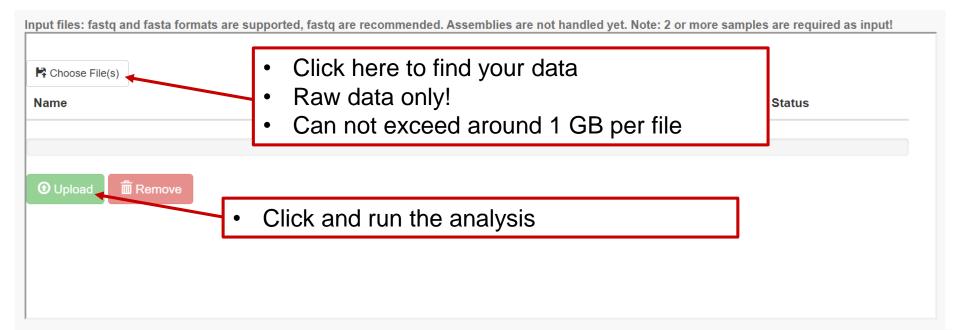
SNP distance matrice and phylogenetic tree with long and short raw sequencing reads or with assembled genomes.

* For large datasets (>100 isolates), consider running the analysis locally, as uploading large quantities of data to the webserver may be troublesome. For a local installation of MINTyper, please see https://bitbucket.org/genomicepidemiology/mintyper

View the <u>version history</u> of this server.

Single reference of your choosing

10


Note: If you would like to choose a Vælg fil Der er ingen fil valgt
Select the host database
Bacteria organisms (KmerFinder DB)
Motif masking
No masking 🗸
Prune significance Significant calls only
Pruning length: The pruning length should be non-negative - the default is 10
Cluster length:

Maximum SNP distance to determine if two isolates belongs to the same cluster.

- Define a SNP distance for clusters
- Often between 10 and 20 (but depends on the length and nature of the outbreak).

UPLOADING DATA

REFERENCES

1. Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018; 19:307.

Center for Genomic Epidemiology

Your job is being processed

Wait here to watch the progress of your job, or fill in the form below to get an email message upon completion.

To get notified by email: henh@ssi.dk Notify me via email

This page will update itself automatically.

• Insert your email address

Center for Genomic Epidemiology

Your job is being processed

Wait here to watch the progress of your job, or fill in the form below to get an email message upon completion. henh@ssi.dk

To get notified by email:

Notify me via of this page will update itself automatically.

 Then wait for the result (if you start many different analysis, it is advised to make a log of what you have started and with what settings...and perhaps also the hypothesis).

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
AMA004660_S12_L555_R1_001.fastq.gz	4327141	88.33
Log Distance matrix Phylogentic tree Vcf files of m	utations Reference Sequence	Cluster.dbscan

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Isolate	Valid positions	Pct. of reference	
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54	
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37	
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16	
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07	
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67	
AMA004660_S12_L555_R1_001.fastq.gz	4327141	88.33	
Log Distance matrix Phylogentic tree Vcf files of	mutations Reference Sequence Clus	eter.dbscan	
12 12 12 12 12 12 12 12			
346D963 A ^N Ĉ₀ C҈3 Ĉ≡ Ĉ⊕ L️			
Downloads □ Q ··· ❖			
results (24).log			
Abn fil			
results (23).log			
□ results (22).log			
Abn fil			
main.snp_matrix (27).txt			
_			
results (21).log Abn fil			
results (74).txt Abn fil			
results (73).txt			
Abn fil			
results (72).txt			

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
AMA004660_S12_L555_R1_001.fastq.gz	4327141	88.33
Log Distance matrix Phylogentic tree Vcf files of mut	ations Reference Sequence	Cluster.dbscan
12 12 12 12 12 12 12 12 X 12 12 12 12 12 12		
# Running mintyper 1.1.0 with following input conditio	ns:	
Namespace(bc=0.7, cge=True, cluster_length=10, exe_pat /MINTyper/MINTyper-1.0/IO/1_25_9_2022_239_804_64033/up		
<pre># Finding best template # Best template found was NZ_CP024672.1 Citrobacter fr</pre>	eundii strain HM38 chromoson	me, complete genome
# Template number was: 1901 # Mapping reads to template # Pained and illuming input not given but determined b		

- # Paired-end illumina input not given but determined by the eval_pe function

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/S

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/I

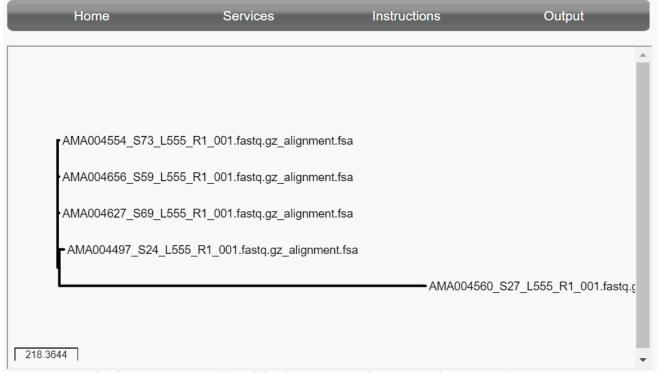
/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/I

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/I

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINTyper-1.0/IO/

- # Alignment completed successfully
- # 4149824 / 4899014 bases included in distance matrix.

mintyper total runtime: 383.13289737701416 seconds

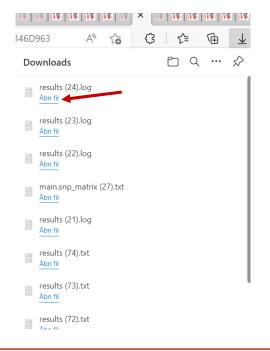

Percentage of reference covered by all isolates: 84.71 (4149824 / 4899014)

Isolate	Valid positions	Pct. of reference	
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54	
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37	$\mathcal{O}_{\mathbf{z}}$
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16	
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07	1
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67	0.704
AMA00 <mark>4</mark> 660_S12_L555_R1_001.fastq.gz	4327141	88.33	ST91
Log Distance matrix Phylogentic tree Vcf files of muta	ations Reference Sequence Clu	ster.dbscan	

	1	2	3	4	5	6
6						
AMA004497_S24_L555_R1_001.fastq.gz_alignment.fsa	0					
AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa	15	0				
AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa	133	130	0			
AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa	15	0	130	0		
AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa	15	0	130	0	0	
AMA004660_S12_L555_R1_001.fastq.gz_alignment.fsa	46761	46758	46758	46758	46758	0
	AMA004497_S24_L555_R1_001.fastq.gz_alignment.fsa AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa AMA004660_S12_L555_R1_001.fastq.gz_alignment.fsa	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa 15 AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa 133 AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa 15 AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa 15	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa 15 0 AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa 133 130 AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa 15 0 AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa 15 0	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa 15 0 AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa 133 130 0 AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa 15 0 130 AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa 15 0 130	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa 15 0 AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa 133 130 0 AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa 15 0 130 0 AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa 15 0 130 0	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa 15 0 AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa 133 130 0 AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa 15 0 130 0 AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa 15 0 130 0 0

Center for Genomic Epidemiology

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)


Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mut	tations Reference Sequence Clust	ter.dbscan

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mut	ations Reference Sequence Clus	ster.dbscan

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of muta	ations Reference Sequence Cl	uster.dbscan

```
# Running mintyper 1.1.0 with following input conditions:
```

Namespace(bc=0.7, cge=True, cluster_length=10, exe_path='/home/data1/services/MINTyper/MINTyper-1.0/scripts/bi ervices/MINTyper/MINTyper-1.0/I0/1_25_9_2022_230_605_513390/uploads//AMA004627_S69_L555_R2_001.fastq.gz', '/ho

- # Finding hest template
- # Best template found was NZ_CP024672.1 Citrobacter freundii strain HM38 chromosome, complete genome
- # Template number was: 1901
- # Mapping reads to template
- # Paired-end illumina input not given but determined by the eval pe function

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINT

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MIN

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINT /home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINT

/home/data1/services/MINTyper/MINTyper-1.0/scripts/bin/MINTyper/kma/kma -ipe /home/data1/services/MINTyper/MINT

- # Alignment completed successfully
- # 4368832 / 4899014 bases included in distance matrix.

mintyper total runtime: 370.7805440425873 seconds

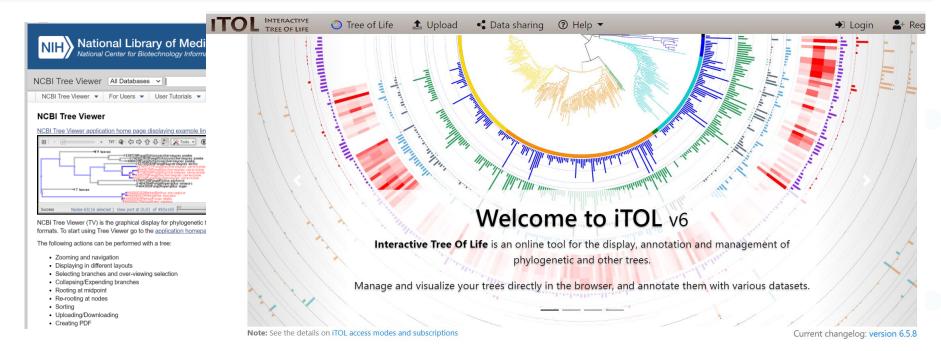
Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mut	Reference Sequence Clu	uster.dbscan

	J 1	1	2	3	4	5	
	5	•	_	•	7		
1	AMA004497_S24_L555_R1_001.fastq.gz_alignment.fsa						
2	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa	17	0				
3	AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa	1280	1275	0			
4	AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa	17	0	1275	0		
5	AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa	17	0	1275	0	0	

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

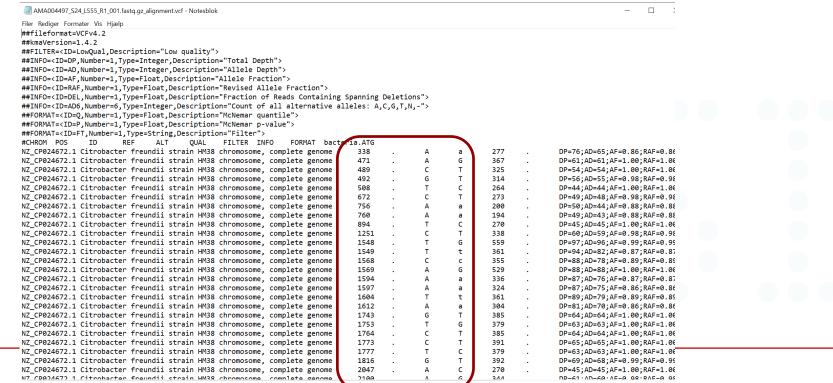
Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mut	rations Reference Sequence Cl	luster.dbscan


	J , 1	1	2	3	4	5
	5	•	_	· ·	•	Ŏ
1	AMA004497_S24_L555_R1_001.fastq.gz_alignment.fsa	0				
2	AMA004554_S73_L555_R1_001.fastq.gz_alignment.fsa	17	0			
3	AMA004560_S27_L555_R1_001.fastq.gz_alignment.fsa	1280	1275	0		
4	AMA004627_S69_L555_R1_001.fastq.gz_alignment.fsa	17	0	1275	0	
5	AMA004656_S59_L555_R1_001.fastq.gz_alignment.fsa	17	0	1275	0	0

MINTYPER OUTPUT - VISUALIZATIONS

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mut	Reference Sequence	Cluster.dbscan



MINTYPER OUTPUT – VCF DATA

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mut	Reference Sequence Clust	ter.dbscan

MINTYPER OUTPUT – REFERENCE

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Below is the single isolate stats on covered and trusted positions with respect to the reference.

Isolate	Valid positions	Pct. of reference
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67
Log Distance matrix Phylogentic tree Vcf files of mu	utations Reference Sequence Clus	ter.dbscan
template sequence (2) - Notesblok		

Filer Rediger Formater Vis Hjælp

>NZ CP024672.1 Citrobacter freundii strain HM38 chromosome, complete genome

ACTTCGGCGCCAAAGTGCTGCACCCGCGCACCATTACCCCTATTGCCCGGTTCCAGATCCCTTGCCTGATTAAAAATACCGGCAATCCACAAGCGCCTGGCACGTTGATTGGCGCAGCAGTGATGACGACGATTTGCCGGTAAAAGGTATTTC GCGTAAATTCCTCTACGACACCAACGTGGGCGCAGGCTTGCCGGTAATTGAAAACCTGCAAAACCTGCTCAGCGCAGGTGATGATGCAGCGTTTCTCCCGGTATTCTTTCCGGCTGTCGTTTATTTTCGGCAAGCTGGATGAAGGCATC AAGCGGTTCTCAATGATGTAGCGGCTCATCAGGCCGCGCCTTTCTTGGCATAAAAGCTGATGACTTTGAACTTGCCGTTTTTCTCGTCTAGGAAGACTGGTTTAATCAGCTCGGCATTGAGCTTTTTCGGCTTTCACGGATTTAAAAATACTCA GATGCGCATATTGTCCAGTTTCAGAAAGACGAGATTGTTCTCCGCATAGATGTAGTTGGCGACGATCGAGCTAAAGGCAAACAGAATCACAATAAAAGCCACGAATCCGGCTCCACTCTCCCCGTCAGCGTTACCATTGCTTTTTGAAGTAAC CCAAACTGGCGAATGTAGCGGAACTGCACGAACCCTGTACGCCAGGTGAACCAACATCCTGCGCCAAGCAGGAGGTAGATCACCCGACCCCCAGAGTATTTCATTAATAAATGAGAAAAAATCAGGCATTAACATCCCTCTTGTTGATGATGCCC CGGAAATCTACGAGTACTACAAACAGCACGGTTACGAAACCGTGGTGATGGGTGCGAGCTTCCGTAACATCGGCGAAATCATTGAGCTGGCAGGCTGCGGATCGTCTGACGATTGCTCCGGCACTGCTGAAAGAGCTGGCGGAAAGCCGAAGGCGA GGATTTATTGTCGACCGGGTCGGCGCACAAACCTTTATTGTCGGCAGCCTGCTGCTGGCCTGTTCGAGCTGGTTTTTCTATCACCTGACCGGCAGCCATCCTCAGCACTTGTTCCTGTTATACGGGCTGGGATTATGCGTTGGCGTG CAAAATCATCATTGATTGATTGATGGTGAAATAGTTTTCCCCAAATAACGATCACTGTCTTCGGGGCGCGCATAATAATCAGGGGAGGGCACTGTCTATGATCTAACGAAGGGAAAACGAATTATTTTCCCTGTGATGGGCATCACGCTTGTGCC TTGATGGAGGAAGGCACGTTCAGACTCTGGCTGGACATGCGGGCAGCTTTGAAATAAACCGATGCACCACTGAGCTGTAAATCACCATGATCGGCCGTAAGTTGAATGCGTTTCACCACGCGGCAAACGGGAAGTTTCAGCGTCAGATCTTGA CGCGCGGTATGCCGCAGATCGAAGTTACTTTTGACATCGATGCCGACGGTATCCTGCACGTTTCCGCGAAAGACAAAACAGCGGTAAAGAGACAGAAGATCACCATCAAGGCTTCTTCTGGTCTGAACGAAGAAGAACTTCAGGAAAATTCAGAAAAATCGTTC GTATTCCGACTCTGGAAGAGTGTGACGTCTGCCACGGTAGCGGCGCAAGGCGGGCACTCAGCCGCAGACCTGTCCAACCTGTCACGGTTCTGGTCAGGTACAGATGCGTCAGGGCTTTTTTTGCCGTACAGCAGACCTGTCCACACTGTCAGGC CATGATGAATTTTAAACTGCCAACAGATCGTACCTACGATGGCCAGTCTCTGGTTCCATTACTTGAACAGAAAACGTTAGCACGTCAGAAAACCACTCATCTTTGGCATTGATATGCCGTTCCAGGATGATCCTACTGACGAATGGCCGATCGT

MINTYPER OUTPUT - CLUSTER ANALYSIS

other Cluster

Percentage of reference covered by all isolates: 89.18 (4368832 / 4899014)

Isolate	Valid positions	Pct. of reference			
AMA004497_S24_L555_R1_001.fastq.gz	4435406	90.54			
AMA004554_S73_L555_R1_001.fastq.gz	4427220	90.37			
AMA004560_S27_L555_R1_001.fastq.gz	4465781	91.16			
AMA004627_S69_L555_R1_001.fastq.gz	4412663	90.07			
AMA004656_S59_L555_R1_001.fastq.gz	4442114	90.67			
Log Distance matrix Phylogentic tree Vcf files of muta	ations Reference Sequence	Cluster.dbscan			

		isola	tes	.0101			
#53	10.000000	1					
"AMA004497_S2	4_L555_R1_001.fa	stq.gz_align	ment.fsa"	0		0	
"AMA004554_S7	3_L555_R1_001.fa	stq.gz_align	ment.fsa"	2		1	
"AMA004560_S2	7_L555_R1_001.fa	stq.gz_align	ment.fsa"	0		2	
"AMA004627_S6	69_L555_R1_001.fa	stq.gz_align	ment.fsa"	2		1	
"AMA004656_S	9_L555_R1_001.fa	stq.gz_align	ment.fsa"	2		1	
5 ΔΜΔΘΘΔΔΘ7 S24 I	555_R1_001.fastq.gz_	alignment fsa					
	555_R1_001.fastq.gz_	_	17				
	555_R1_001.fastq.gz_		1280	1275			
AMA004627_S69_L	555_R1_001.fastq.gz_	alignment.fsa	17	0	1275		
AMAGGAGEG CEO I	555_R1_001.fastq.gz_	alignment fca	17	0	1275	0	

THE EXCERCISE - GUIDELINES

Guidelines to how to get started when you have a potential outbreak

A SNP analysis is in most cases performed to examine the clonal relationship between two or more isolates. The result may then be used to support further epidemiological investigations, but can rarely stand by itself.

Often, the researcher is not completely sure which of the strains are relevant to compare, and this can lead to sub-optimal comparisons, as it in essence does not make sense to compare things, which turns out to be very different. SNP analysis can therefore often be an iterative process where the most distantly related isolates are removed before the next round of analysis is performed. Not to say that all non-cluster isolates should be removed, though. Sometimes it is convenient to have one or more "outgroup" isolates to put the outbreak genomes into the right context, but genomes with more than approximately 500-1000 SNPs distance should be considered to be removed before a rerun of the remaining isolates to utilize as much as possible of the reference data in the analysis.

To save time in the initial analysis, draft genomes can be used to get the overall phylogenetic overview of the choosen isolates for further selection of the relevant genomic data before the final analysis. However, the final analysis should preferably be made on raw sequencing reads, as this gives the opportunity to only use High-quality SNPs in the analysis...and potentially also being able to spot intra-species contamination of the sequencing reads. This is because

Most SNPs analysis tools (such as CSI Phylogeny at CGE) can only work with short reads such as those generated by Illumina sequencers because the DNA aligners (such as BWA and Bowtie) can only handle short reads. Long reads from PacBIO or Oxford Nanopore Technology (ONT) are too

THE EXCERCISE - COMPARISONS

Analysis 2 vs 3: CSI phylogeny analysis (Prune = 100) using draft genomes based on Illumina sequencing and either a KmerFinder reference or the optimal reference.

Analysis 2 vs 4: CSI phylogeny analysis (Prune = 100) using either draft genomes or raw reads based on Illumina sequencing and the KmerFinder reference.

Analysis 4 vs 5: CSI phylogeny analysis (Prune = 100) using raw reads based on Illumina sequencing and the KmerFinder reference and including either all 12 genomes or only the 9 most similar genomes.

Analysis 3 vs 7: CSI phylogeny analysis (Prune = 100) using draft assemblies from either Illumina og ONT data.

Analysis 6 & 8: CSI phylogeny vs MinTyper analysis (Prune = 100) using raw Illumina data the Best reference and only the 9 most similar genomes.

Analysis 8 & 10: MinTyper analysis (Prune = 100) using either raw Illumina or raw MinION (fast basecalling) data with the Best reference and only the 9 most similar genomes.

Analysis 12 & 13: MinTyper analysis (Prune = 100) using both raw Illumina data and raw MinION data basecalled either using the fast basecalling algorithm or the Super accuracy algorithm in Gubby and with the Best reference on all 2×12 genomes.

Hint: The fastest way to analyse these 12 genomes is to first perform **Analysis 3** (If a perfect reference is available, otherwise Analysis 2) on the Illumina draft genomes to see if some of the isolates can be omitted and then **Analysis 6** to perform the HQ SNP analysis on a subset of the isolates, which are closest to each other.

Notice: As MinION draft assemblies are of poorer quality, analyzing these is not recommended. Therefore, all 12 genomes in raw format should be included and then a final analysis with the selected subset of genomes can be made.

THE EXCERCISE – ANALYSIS EXAMPLES

CSI Phylogeny

Analysis 1

Tool: CSI Phylogeny

Reference: KmerFinder reference

Prune: 10

Data: Illumina draft genomes (all 12 isolates)

Results: Center for Genomic Epidemology - Results (dtu.dk)

Server run time (approximately): 10 minutes

Analysis 2

Tool: CSI Phylogeny

Reference: KmerFinder reference

Prune: 100

Data: Illumina draft genomes (all 12 isolates)

Results: Center for Genomic Epidemology - Results (dtu.dk)

Server run time (approximately): 10 minutes

Analysis 3

Tool: CSI Phylogeny

Reference: Best reference

THE END

