

Implementing ISO 23418:2022 for data management in laboratories

Dr. Peter Evans¹ & Dr. Emma Griffiths²

¹FSIS USDA, USA & ²Simon Fraser University, Canada

EURGen-RefLabCap

March 12 2024

Outline

1. History and goals of ISO 23418

2. Contextual data ("metadata") overview and best data standard design practices

3. Canadian implementation – modularization, customization, reuse

4. Tools & databases

5. What's next for ISO

ISO Principles

<u>General</u>

- Identified market need: improve quality, consistency, reproducibility
- Consensus
- Several rounds of international review, feedback, voting

Data Management and Sharing

- 1. Clear meaning (human and machine readable)
- 2. Interoperability (different datasets, systems, processes)
- **3. Harmonization** (no organization-specific terminology should take precedence)
- **4. Flexibility** (recognizing different needs in different lab settings)
- 5. Maximizing utility of data (prioritizing information types/structures)
- 6. Best semantic practices

Challenges of Status Quo in Standards Development

Use case-specific vocabulary

- Narrowly scoped (limits interoperability)
- Organization-specific terminology
- Lack of semantic best practices (no rules, impacts machinereadability)
- Abbreviations, inconsistent structure, word bombs, highly composite terms

ISO terminology like a "common currency" for communication in genomics and beyond

Why don't we just use "X" vocabulary?

- Organization-specific vocabularies
- Clinical and regulatory terminologies (SNOMED, LOINC, FHIR HL7, CDISC)
- Public repository/public database requirements
- Sectors (One Health animal, human, environment)
- Industry
- Research

Ontologies: Built for harmonization and data linkage

Controlled (standardized) vocabulary **Hierarchy + logic** (linked data, enable classification for analyses)

Universality

- Meanings disambiguated with URIs
- Labels/Synonyms (organization-specific/interoperability)
- Principles and practices to enable reuse (BFO, RO)

Community

- Community of practice (OBO Foundry, >200 interop ontologies)
- Registries/Portals (EBI OLS, Ontobee, BioPortal)
- Languages/Tools (Protégé, LinkML, Robot, OntoFox)

FAIR

5-star Open Data Plan

 \star Make your stuff available on the Web (whatever format) under an open license

Hausenblas & Kim (2012) Berners-Lee (2009)

- ★★ Make it available as structured* data (e.g. Excel instead of an image scan of a table)
- $\bigstar \bigstar \bigstar$ Make it available in (2+) non-proprietary open format (e.g., CSV instead of Excel)
- $\bigstar\bigstar\bigstar\bigstar$ Use URIs to denote things, so that people can point to your stuff

Link your data to other data to provide context

FoodOn:455678

ENVO:009747

Standards: ISO 23418:2022

Microbiology of the Food Chain — Whole genome sequencing for typing and genomic characterization of foodborne bacteria — General requirements and guidance

Contextual Data Fields

Sample Collection Lab Contact Information **Geographic Location of Sample Collection Collection Date** Sample Type Food Product **Food Processing Environmental Material Environmental Location Collection Device Collection Method Microbiology Lab Contact Information** Organism Strain Isolate Serotype **Isolation Media Isolate Passage History** AMR & Virulence phenotypes

ISO standard provides tables and annexes to describe...

- 1. Information about the **sample**
- 2. Information about the **isolate**
- 3. Information about the **sequence**

ISO slim (package of fields and terms) available: https://github.com/GenEpiO/iso2017

Fields and terms sourced and adapted from:

- Agency documentation
- Public repository submission forms
- Domain expert consultations
- Existing standards and ontologies

How organizations implement ISO 23418 for metadata management is up to them.

- Makes recommendations, not laws
- Depends on organization's infrastructure, capacity, goals, roles
- What we can do today, is give you **options**
- Examples of successful implementations

No one

size fits all

solutions

How's it

going,

eh?

Canada: Federated system, patchwork of jurisdictional powers

- **10 provinces, 3 territories** (Federal, Provincial/Territorial, Municipal jurisdictions)
- Many federal agencies with different departments

 e.g. Health Canada, Public Health Agency of
 Canada, Canadian Food Inspection
 Agency, Agriculture & Agri-Food
 Canada, Environment and Climate
 Change Canada, Department of Fisheries & Oceans
- Many labs accredited for ISO 17025
- Most microbiological assays and PCR, increasingly genomics
- Most capacity at federal level, increasing at provincial level as well as local level (e.g. hospitals)
- Most labs have own data management solutions, data sharing difficult, international standards help

Putting ISO 23418 into Practice: Pathways to Implementation

Modular framework and core content (ISO 23418:22)

Modules expanded, populated with fields/terms from community-driven ontologies

- Flexible, extensible, customizable, interoperable
- Apply to different use cases/pathogens/programs (Federal/Provincial)
 - SARS-CoV-2 (pandemic)
 - MPOX (epidemic)
 - Wastewater
 - One Health AMR
 - *LIMS modernization (NML e-reqs, intake/storage)
- Different technical implementations (*not accredited)

Thematic Modules:

Database identifiers Sample collection and processing Isolate information Sequencing information Bioinformatics & QC metrics AMR testing information Provenance & acknowledgements

GRDI-AMR standard: ISO-based specification for One Health Antimicrobial Resistance (AMR)

GRDI-AMR: Genomics and Research Development Initiative to support Canada's federal AMR action plan

- Based on ISO framework
- Scope: Bacteria. WGS across sectors, commodities, environments, hosts
- Goal: use genomics and harmonized contextual data to understand foodborne AMR in food supply and environment, identify interventions
- Canadian implementation: Federal Interagency (PHAC, CFIA, AAFC, ECCC, DFO, HC etc)
- also international sharing Uganda, Canada-UK sharing

https://github.com/cidgoh/GRDI_AMR_One_Health

Adapting ISO Framework for One Health AMR: customized modules and content

Domain Content

- Repository accession numbers and identifiers
- Sample collection and processing
 - Food products
 - Food processing
 - Host/food geo-loc origin vs sampling location
 - **Environments** (abattoir, farm, natural enviros, fisheries)
 - Environmental **materials** (chicken litter, sediment, water, soil)
 - Anatomical parts/sites (feces, organ contents)
 - **Presampling activities** (fertilizer, vaccination, decontamination)
 - Sampling/sequencing strategies (bias/limitations)
- Isolate information
- Host information (animals, plants, humans)
- Sequencing methods
- Bioinformatics and quality control metrics
- AMR phenotype testing
- Risk assessment
- Provenance and attribution

Standardized null values (INSDC)

Standardized fields & Picklists (can be updated)

Support docs (ref guide/SOP)

Operationalized using data curation tools

**being integrated across federal genomics ecosystem

Technical Implementations – Tools & Databases

Different ways to implement the standard for data management.

1. Spreadsheetbased templates and tools

Implement ISOcompliant standard (as-is)

e.g. DataHarmonizer

2. Existing Systems

Mapping
Automated
transformations,
development of
interchange formats,
focus on
interoperability

e.g. mapping/interchange: - National Microbiology Laboratory LIMS (Public Health) - CIPARS (Canadian Integrated Program for AMR Surveillance) - INSDC BioSample packages 3. New Systems

Implement ISOcompliant standard (as-is)

e.g.

- CFIA Genomics db
- Virtual Microbial Resource (graph db)

Spreadsheet-based templates: The DataHarmonizer

- Javascript application
- Download locally, all prov public health labs have local copy
- Extensible, as many templates as needed (under active dev)
- Colour-coding, picklists, curation features, validation

Adapting existing systems: Creating **bridges across systems** with **mapping and exchange formats/tools.**

Examples of mapping ISO vocab to other dictionaries/schemas to create "common terminology currency".

LAB LIMS	STANDARD	
TEXT_ID	specimen collector sample ID	
CUSTOMER	sample collected by	Building setting
HC_COUNTRY	geo_loc_name (country)	Collection site geographic feature Broad-scale environmental context
PH_TRAVEL	destination of most recent travel (city)	environmental site [GENEPIO:0001232] Local-scale environmental context Food production environmental
PH_TRAVEL	destination of most recent travel (state/province/territory)	Farm watering water source
PH_TRAVEL	destination of most recent travel (country)	US One Health NCBI BioSample Package: Standard
PH_TRAVEL	most recent travel departure date	
PH_TRAVEL	most recent travel return date	

Mapping and interchange formats enable automated transformations (*ref lab* formats → *community* formats → *downstream* formats).

File	✓ Settings ✓ Validate	Help - Template	PI							
				file name	.xls	✓ Format				
	Database Identifiers				Dexa		a to GRDI	?		
	SPECIMEN_ID	ISOLATE_ID	SA		Cance	el	Export	AL_SAMPLE_ID	LFZ_ORIGIN_COUNTRY	SUBJECT_CODE
1										
2										
3										

- SQL database in an Azure cloud with an Access db front end
- ISO-based GRDI specification forms main schema
- Synonyms captured in tables, some additional customization
- Goal: link directly to agency's cloud computing so metadata can be used in different ways

Virtual Microbial Resource

Agence de la santé publique du Canada

- *"Tinder for microbial collections"* (making data matches between organizations)
- Graph database for hosting data, analysis → schema based on ISO-based GRDI specification

Figure courtesy of Gabriel Wajnberg (CFIA)

International adoption of the ISO framework

- Global, volunteer organization
- >200 members, 90 organizations, 30 countries

Scope:

 Reproducibility, interoperability, portability, capacity for public health bioinformatics

Working Groups:

- 1. Data Structures
- 2. Infrastructure
- 3. Pipelines & Visualization
- 4. Training & Workforce
- 5. Ethics & Data Sharing

https://www.pha4ge.org

@pha4ge

° @pha4ge@@mstdn.science

Enshrined ISO-based Framework in International Specifications

Customized framework:

PHA4GE SARS-CoV-2 contextual data specification https://github.com/pha4ge/SARS-CoV-2-Contextual-Data-Specification

PHA4GE Wastewater contextual data specification https://github.com/pha4ge/Wastewater_Contextual_Data_Specification

New Modules: PHA4GE PCR primer amplicon scheme specification https://github.com/pha4ge/primer-schemes

PHA4GE QC tag specification https://github.com/pha4ge/contextual_data_QC_tags

PHA4GE hAMRonization specification (AMR detection across widely used tools) https://github.com/pha4ge/hAMRonization

Rewiring & Modernizing LIMS at the NML (national reference lab) PAGERR – Pathogen Agnostic Genomic Electronic Requisition and Reporting

- Extra modules added to ISO-based framework
 - Ontology approach
 - **Streamline** data intake and storage
- Harmonize across disease/pathogen areas
- Better data integration/analysis

"Upgrading the plumbing and re-wiring the NML as we support the expansion of genomics by implementing e-requisitions and reporting to modernize infectious disease detection and surveillance."

Summary: ISO 23418 provides a quality framework for your contextual data

- Improves **auditability** (e.g. chain of custody)
- Provenance and acknowledgement
- Streamlines re-use and data sharing
- Reduces uncertainty
- Creates expectations for structure, requirements, and completeness
- Can reuse curation training/skills, tools, also agreements
- Future-proofs data

What's Next for ISO?

ISO TC 34 / SC 9 Ad'hoc Group G 5 "Antimicrobial resistance brainstorming"

Mandate:

Investigate the need and feasibility to launch standardization work on AMR of bacteria, based on sequencing with a One Health perspective

Invited experts:

- ISO TC 34 / SC 16 (is Standardization of biomolecular testing methods applied to foods, feeds, seeds and other propagules of food and feed crops)
- ISO TC 212 (Medical laboratories and in vitro diagnostic systems)
- ISO TC 276 (Biotechnology)

Acknowledgements

ISO TC34/SC9/WG25

US Department of Agriculture

US Food & Drug Administration

Centre for Infectious Disease Genomics and One Health (SFU)

Public Health Agency of Canada

Canadian Food Inspection Agency

GRDI-AMR

Public Health Alliance for Genomic Epidemiology (PHA4GE)

Thank you for listening!