

Simulated exercise on CRE outbreak – Klebsiella

EURGen-RefLabCap Virtual multidisciplinary training workshop 02 May 2023 Jette S. Kjeldgaard & Faisal Khan (jetk@food.dtu.dk – fakh@food.dtu.dk)

Title

2

Simulated exercises - background

- Series of multidisciplinary training workshops
 - Sept/Oct 2022 introduction to SNP analysis and cgMLST for cluster analysis (WS1)
 - May 2023 Simulated exercise on outbreak analysis (Klebsiella pneumoniae; WS1)
 - Sept 2023- Simulated exercise on outbreak analysis (WS2)
 - 2024: Simulated exercise on outbreak analysis (WS2)

WS1: CCRE/ *E. coli* and *Klebsiella* spp. WS2: CPO/ *Pseudomonas aeruginosa* and *Acinetobacter baumannii*

Purpose of the workshop

- To build capacity to work with outbreak investigations
 - background information about bacterial subtyping and cluster analysis
 - suggestions for online available analytical tools to get started on bacterial comparison and outbreak detection
 - In continuation of last virtual training workshop Sept/Oct 2022
- To work with larger amounts of sequencing data and metadata and analyse outputs from SNP analyses
- See more examples of typing and characterisation options by online tools and try working with online tools by yourself

Learning objectives

- You will be able to perform a cluster analysis of bacteria to look into possible relatedness in a dataset
- You will learn about other relevant tools for sequence analysis and work with a real outbreak data set to characterise and analyse
- You will apply the results from the cluster analysis and the additional analyses to elucidate a possible hospital outbreak of CCRE

Agenda

Exercise schedule:

- Day 1: Tuesday 2 May 13:00~ 14:30
- Introduction and purpose of exercise
- Introduction to typing methods; short review of species ID, AMR, MLST and phylogeny tools
- *Klebsiella* hyper-virulence identification (K-PAM)
- Information about exercise setup, data, tasks and question surveys
- Time for questions

• Day 2: Friday 12 May 13:00-15:00

- Presentation of exercise results (outbreak investigation)
- Use of different tools and examples of additional analyses
- Introduction to bioinformatics tool *Kleborate*
- Questions/comments from participants

Your input is very welcome!!

DTU

Workshop overview

Resources – where to find what?

- Slack
 - Slides and video recordings from previous multidisciplinary workshop
 - MLST/cgMLST, SNP calling tools (CSIPhylogeny and MinTyper)
 - Links to data injects
 - Slides and link to video recording from this workshop
- Sciencedata
 - Data injects:
 - Sequence data (fastq and fasta) for each inject
 - Description and additional information about the data injects
- Email
 - Links to data injects

Tasks - analyses

Analyses

- Characterisation:
 - Species identification
 - Resistance mechanisms (NDM pos/neg)
 - Hypervirulence
- Subtyping:
 - MLST

- Suggestions for tools
- KmerFinder and/or rMLST
- ResFinder/CARD/AmrFinderPlus
- K-PAM
- MLST at CGE (or Pasteur)

• Cluster analysis

CSIPhylogeny & MinTyper

These analyses will be performed on a limited number of isolates Overall cluster analysis will be available as link and newick + SNP matrix files

9

10-workshops-and-courses ~ Wednesday, April 26th ~ 00 🙌 🤤 🗐 🎝 Д Jette Sejer Kjeldgaard 9:50 AM Dear all, here you can find the links to the recorded presentations from the previous workshop on outbreak scenarios (Sept/Oct 2022), also with presentations on SNP calling tools; CSIPhylogeny and Mintyper, and with some background on typing tools, incl. MLST and cgMLST. CCRE outbreak detection - part 2 Multidisciplinary workshop on CCRE outbreak detection - part 1 Panopto EURGen-RefLabCap_1st_virtual_multidisciplinary_training_resolv Here you can also find the slides from the previous course in Sept/Oct 2022 part2 (14 kB) -4 files ▼ Microsoft Teams EURGen_WS_1_Intro_and CSIPhyl... EURGen_WS_1_MinION_typing_H... PDF PDF EURGen_WS_1_SNPvscgMLST_Ha... EURGen_WS1_Exercise_part_2_Je... × PDF PDF EURGen-RefLabCap: 1. virtual multidisciplinary training to resolve a... 2022-10-10 11:00 UTC Jette Sejer Kjeldgaard

Brush-up of suggested tools (previously demonstrated)

Antimicrobial	Class	WGS-predicted phenotype	Genetic background
vancomycin	glycopeptide	No resistance	
mupirocin	pseudomonic acid	No resistance	
tobramycin	aminoglycoside	Resistant	armA (armA_AY220558), aac(6')-lb-cr (aac(6')-lb-cr_DQ303918)
hygromycin	aminoglycoside	No resistance	
isepamicin	aminoglycoside	Resistant	armA (armA_AY220558)
virginiamycin s	streptogramin b	Resistant	msr(E) (msr(E)_FR751518)

Species identification (December 2022 course)

Species identification/confirmation by WGS

- KmerFinder
 - Full genome match to database

KmerFinder

(https://cge.food.dtu.dk/services/KmerFinder/)

- Shows the most identical match to database
- genome wide plus additional matches
- Can show contamination
 - No threshold for 'acceptable' level of other species
- Can be used to find similar bacteria as reference for SNP analysis (Accessible by accession # in match)

Ribosomal MLST – rMLST

(https://pubmlst.org/species-id)

• Typing based on the 53 genes encoding the bacterial ribosome protein subunits

- rMLST

- Typing based on ribosomal genes
 - (*rps* genes)

Resistance mechanisms

- ResFinder, CARD, AMRFinder+, etc
- Confirmation of NDM-gene and variant
- https://cge.food.dtu.dk/services/ResFinder/

Antimicrobial	Class	WGS-predicted phenotype	Genetic background
vancomycin	glycopeptide	No resistance	
mupirocin	pseudomonic acid	No resistance	
tobramycin	aminoglycoside	Resistant	armA (armA_AY220558), aac(6')-lb-cr (aac(6')-lb-cr_DQ303918)
hygromycin	aminoglycoside	No resistance	
isepamicin	aminoglycoside	Resistant	armA (armA_AY220558)
virginiamycin s	streptogramin b	Resistant	msr(E) (msr(E)_FR751518)

Subtyping - MLST

- Use CGE tool, PubMLST or Pasteur website
 - <u>https://cge.food.dtu.dk/services/MLST/</u>

MLST 2.0

Service

Instructions Output

Article abstract Citations

Software version: 2.0.9 (2022-05-11)

Database version: (2023-05-01)

MLST allele sequence and profile data is obtained from PubMLST.org.

Momentanously, the species Lactococcus Lactis is unavailable.

Select MLST configuration

Klebsiella pneumoniae 🛛 🛩

Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele
gapA	100	100	450	450	0	gapA_3
infB	100	100	318	318	0	infB_4
mdh	100	100	477	477	0	mdh_6
pgi	100	100	432	432	0	pgi_1
phoE	100	100	420	420	0	phoE_7
rpoB	100	100	501	501	0	rpoB_4
tonB	100	100	414	414	0	tonB_38

SNP analysis- CSIPhylogeny & MinTyper

https://cge.food.dtu.dk/services/CSIPhylogeny/

CSI Phylogeny 1.4 (Call SNPs & Infer Phylogeny)

Illumina reads and assemblies

CSI Phylogeny calls SNPs, filters the SNPs, does site validation and infers a phylogeny based on the concatenated alignment of the high quality* SNPs.

Output for overall analyses on fastq reads will be provided! PLEASE don't re-run these You can run subsets of samples – preferably **fasta** format!

https://cge.food.dtu.dk/services/MINTyper/

ONT (and Illumina) reads and assemblies

MINTyper 1.0

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads.

CSI Phylogeny 1.4 (Call SNPs & Infer Phylogeny)

CSI Phylogeny calls SNPs, filters the SNPs, does site validation and infers a phylogeny based on the concatenated alignment of the high quality* SNPs.

Upload reference in fasta – e.g. first patient (kp1)

Change pruning to 100 (optional)

Select additional files (preferably fasta to avoid overload of server) Upload all

Input data Comment (to yourself) This comment will appear unaltered on your output page. It has no effect on the analysis. Upload reference genome (fasta format) Note: Reference genome must not be compressed. Vælg fil Der er ikke valgt nogen fil Use altered FastTree (more accurate) Include reference in final phylogeny. Note: Read more here Select min. depth at SNP positions Upload read files and/or assembled genomes (fasta or fastg format) 10x V Note: Read files must be compressed with gzip (compressed files often ends with .gz). If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clicking here. Select min. relative depth at SNP positions 10 % ~ Select minimum distance between SNPs (prune) Isolate File 10 bp V Select min. SNP quality Name Size Progress 30 V Select min. read mapping quality 25 ~ Select min, Z-score 1.96 V O Upload Remove ----

MINTyper 1.0

SNP distance matrice and phylogenetic tree with long and short raw sequencing reads.

* For large datasets (>50 isolates), consider running the analysis locally, as uploading large quantities of data to the webserver may be troublesome. For a local installation of MINTyper, please see MINTyper on github.

View the version history of this server.

Single reference of your choosing Note: If you would like to choose a Vælg fil Der er ikke valgt nogen fil

Select the host database Bacteria organisms (KmerFinder DB)

Motif masking Volume Vo

Prune significance	
Significant calls only	~

Pruning length:

The pruning length should be non-negative - the default is 10

Cluster length:

Maximum SNP distance to determine if two isolates belongs to the same cluster.

10

Input files: fastq files (gzipped also suppoerted). Fasta file assemblies will be ignored and excluded from analysis. Note: 2 or more samples are required as input!

Please do not upload more than 50 isolates.

DTU

Visualisation of newick files

- Several tools available
 - FigTree (http://tree.bio.ed.ac.uk/software/figtree/)
 - iTOL (https://itol.embl.de/)
 - Microreact online tool
 - <u>https://microreact.org/upload</u>

Survey questions

- Identifier: Name of contact/Country/Institution
- Species ID
- AMR genes (NDM)
- MLST's
- Hypervirulence
- Part of a cluster?
 - How many SNPs

DTU

Scenario

Location: Hospital X, EU

"Recently, there has been a rise in infections caused by K. pneumoniae in the intensive care unit (ICU) of hospital X. Initial phenotypic and PCR testing has shown the presence of NDM-positive isolates from patients in the ICU of hospital X and patient-to-patient spread is suspected. This has led to whole genome sequencing (WGS) of three isolates from three unrelated patients (by 'time, place and person' analysis). Cluster analysis and SNP- analysis of the WGS-data has revealed high clonal relatedness between the three isolates".

Scenario-Roles

Outbreak Management Team (OMT)

- Inter-department communication
- Patient health records
- Environmental assessment (e.g. identification of contaminated food or food handling equipment, infection control breaches, cleaning, environmental sampling)
- epidemiological data (e.g. movements and contacts of cases)
- Laboratory data (e.g. whole genome sequencing)

Your Role

Your (the exercise participants) role is to support OMT in the analyses of epidemiology and laboratory data (including WGS data) to generate a hypothesis of the most likely exposure that has caused the outbreak and develop effective prevention and control measures.

Injects 1.1 to 1.3

Inject 2

Further K. pneumoniae identified at ICU, Hospital X

Actions: MLST, cluster analysis

Inject 2

Injects 3.1 to 3.3

Injects 4.1 to 4.2

May 10: Submit answers for survey 2 ©

Inject 5

In hospital X, K. pneumoniae isolates from the archive were also sequenced

Actions: cluster analysis

Inject 5

Hypervirulent clones of Klebsiella pneumoniae

- Hypervirulent K. pneumoniae (hvKp) is more virulent than the classical K. pneumoniae (cKp)
 - rmpA & rmpA2 are responsible for hypermucoidity
 - iucA plays role in the synthesis of aerobactin (siderophores)
 - iroB plays role in the synthesis of salmochelin (siderophore)
 - peg-344 (a metabolic transporter of unknown function)
- K-PAM (<u>https://www.iith.ac.in/K-PAM/predhv.php</u>)
 - Tool to predict *Klebsiella* serotype and hypervirulence using WGS data (Tutorial in Inject 1.1, Annex 2)

ScienceData

DTU

• Link to the workshop data:

https://sciencedata.dk/shared/dtu.dk/3392574dc38c8b5bbb629e024eeda0a0

Science Data	Science Data		
Multidisciplinary Workshop May 2023	Multidisciplinary Workshop May 2023 Inject 1.2		
Inject 1.1 (Particpant instructions) Inject 1.2	□ Name ▲		
Inject 1.3 (Survey 1)	CSIPhylogeny		
Inject 3.1	🗆 📔 FASTA files		
Inject 3.2 Inject 3.3	🗆 🔚 FASTQ files		
🗆 💼 Inject 4.1	D Inject 1.2.pdf		
Inject 4.2 (Survey 2) Inject 5 Inject 5	3 folders and 1 file		