
EURGen-RefLabCap

Best practice workshop – Nanopore sequencing

First day (virtual)

Thursday, 30 November 2023

9:00 - 12:30 CET

Introduction

Four-day best practice workshop for Nanopore training

First day: Thursday 30 November (virtual) - Introduction to Nanopore sequencing

Second day: Wednesday 6 December at DTU - DNA extraction for Nanopore sequencing

Third day: Thursday 7 December at DTU - Library preparation and loading ONT flowcells

Fourth day: Friday 15 December (virtual) - Analysis and interpretation of ONT data

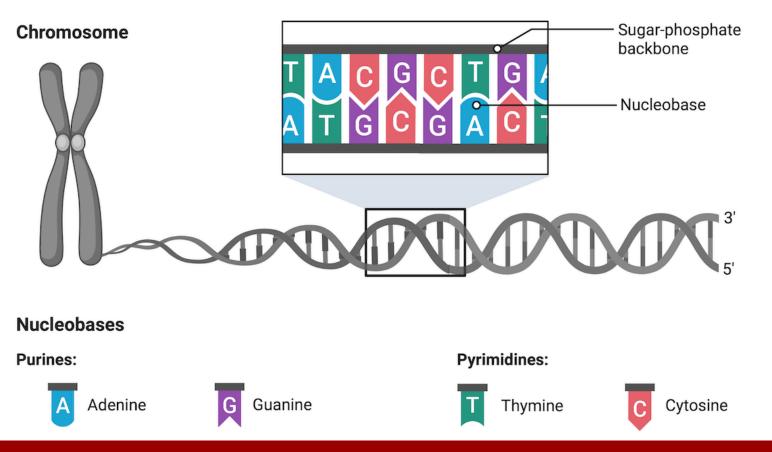
Agenda

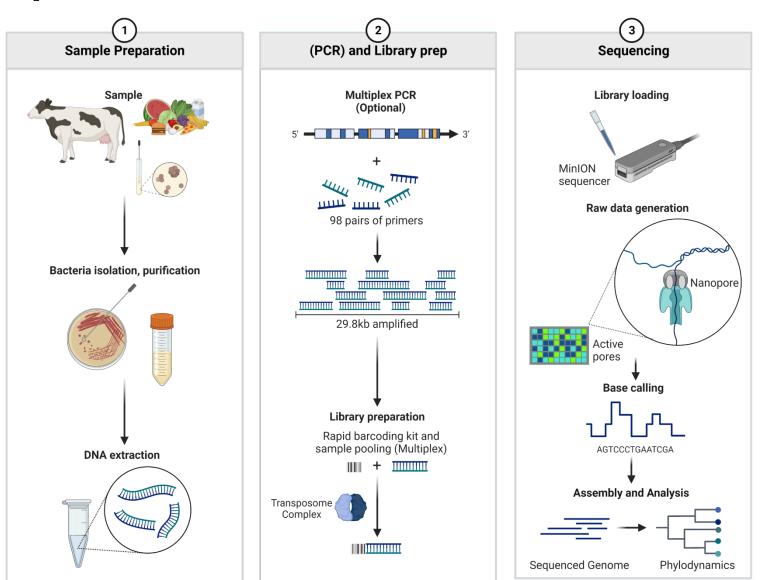
First day (virtual) – Thursday 30 November 2023, 9:00 - 12:30 CET

- 9:00 9:05: Introduction and agenda of the workshop (Ana Rita Rebelo, DTU)
- 9:05 9:20: Biochemical principles of Oxford Nanopore Technologies (Natasia Rebekka Thornval, DTU)
- 9:20 9:50: Comparison between ONT and Illumina sequencing (Ana Rita Rebelo, DTU)
- 9:50 10:00: Coffee break
- 10:00 10:30: State-of-the-art literature on ONT sequencing applied to microbiology research and public health surveillance (Jette Sejer Kjeldgaard, DTU)
- 10:30 11:00: DNA extraction and library preparation for ONT sequencing (Ana Rita Rebelo, DTU)
- 11:00 11:20: Troubleshooting ONT runs (Niamh Lacy-Roberts, DTU)
- 11:20 11:30: Coffee break
- 11:30 12:00: Introduction of bioinformatics analyses of ONT data (Niamh Lacy-Roberts, DTU)
- 12:00 12:20: Explanation regarding purchase of Nanopore sequencer and reagents (Ana Rita Rebelo, DTU)
- 12:20 12:30: Q&A, wrap-up (Ana Rita Rebelo, DTU)

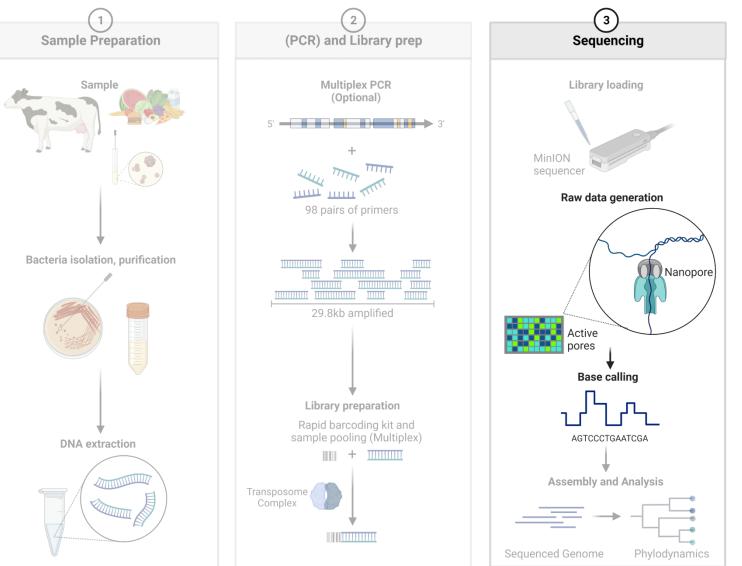
Natasia Rebekka Thornval nareth@food.dtu.dk

Biochemical principles of Oxford Nanopore Technologies




What is DNA sequencing?

DNA sequencing is the determination of the exact **order** of **nucleotides** – adenine, guanine, cytosine and thymine - in a DNA fragment.


Nanopore workflow

DTU

Raw data, base calling and analysis

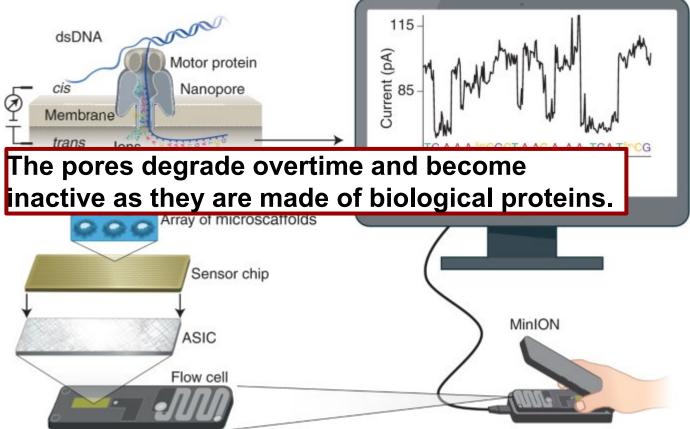

Adapted from "SARS-CoV-2 Genome Sequencing using Oxford Nanopore Technologies", by BioRender.com (2023). Retrieved from https://app.biorender.com/biorender-templates

DTU

Ħ

How does it work?

DTU

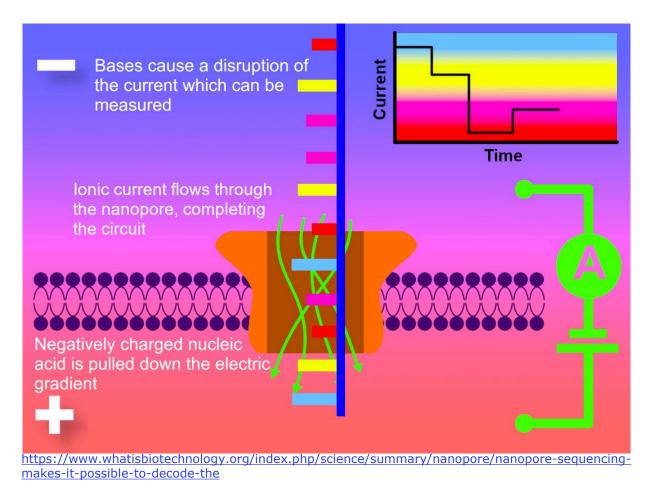


What does it mean?

- Application-Specific Integrated Circuit (ASIC)
 - Controls and measures each experiment.
- Sensor chip

DTU

- An array of channels with connected electrodes, that each corresponds to its own scaffold.
- On a MinION flow cell there are 512 channels, each connected to 4 nanopores (2048 pores total).
- Microscaffolds
 - Each microscaffold contains a synthetic membrane with nanopores.
- Nanopores
 - Each nanopore is a protein-channel imbedded in a synthetic membrane connected to individual electrode.



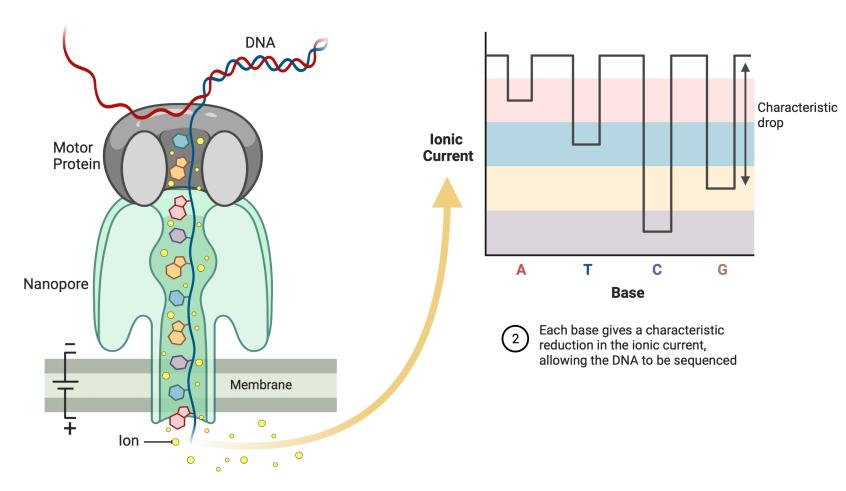
Wang, Y., Zhao, Y., Bollas, A. *et al.* Nanopore sequencing technology, bioinformatics and applications. *Nat Biotechnol* **39**, 1348–1365 (2021). https://doi.org/10.1038/s41587-021-01108-x

Mechanism of the pores

- An electrically resistant polymer membrane separates 2 chambers with electrolyte solutions.
- When a small voltage is added, the electrical circuit is completed by ions flowing through the pores.
- Negatively charged ssDNA is pulled through the pore by the electrical current to the positively charged side.

DTU

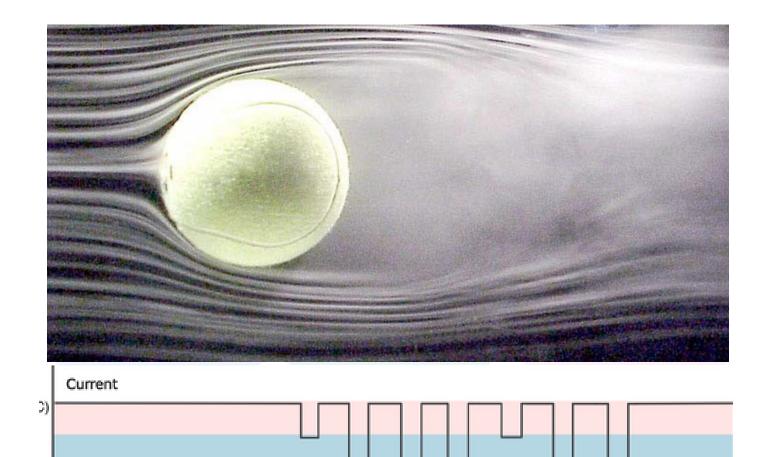
What does it mean?


 A motor protein controls the speed on the DNA strain through the pore that "unzips" the ds-DNA to ss-DNA.

DTU

Ħ

- The motor protein ensures only a single strain is let through the pore in a "step-wise" manner.
- Each DNA base blocks the pore in a distinctive pattern in the electrical current.


DNA is unwound by the motor protein and one strand is translocated through the pore to the +ve side of membrane

How does it translate?

- Each DNA base blocks the pore in a distinctive pattern in the electrical current.
- When ssDNA passes through the Nanopore a distinct disruption in the electrical current can be measured.
- Specialized software translate the patterns by basecalling.
- The disruption can be measured realtime and allow real-time analysis!

A

Т

G

A

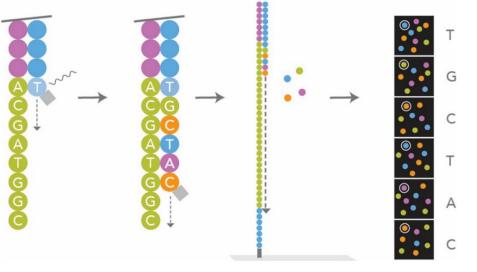
т

C.

C.

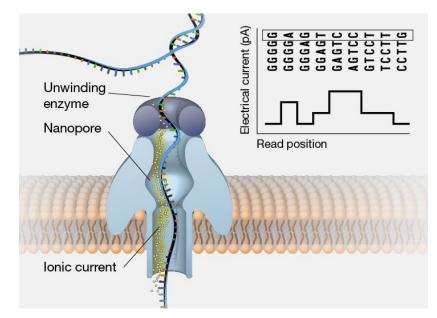
Ana Rita Rebelo anrire@food.dtu.dk

Comparison between ONT and Illumina sequencing


Biochemical principles

The biochemical principles behind Illumina and Nanopore sequencing are different

Illumina


Sequencing by synthesis

EFSA journal 2018;16(S1):e16086

Nanopore

Sequencing through the nanopores

Wetterstrand 2023; https://www.genome.gov/genetics-glossary/Nanopore-DNA-Sequencing

Biochemical principles

The raw data produced by the technologies are therefore also different

Illumina

Short paired end reads

Not real time

24 – 48h to complete run

Nanopore

Long single end reads

Real time User decides when to stop the sequencing

Illumina, Inc., San Diego, CA, USA (https://www.illumina.com)

Oxford Nanopore Technologies, Inc., Oxford, UK (<u>https://nanoporetech.com</u>)

Sequencing yield

The amount of data produced in each sequencing run is different

Illumina

MiSeq: 15 Gb NextSeq: 120 - 360 Gb NovaSeq: 6 Tb (=6.000 Gb)

Nanopore

Minlon: 50 Gb (72h) Gridlon (5 flowcells): 250 Gb Promethlon: 7 Tb (= 7.000 Gb)

Numbers are maximum estimates as described by the companies

Not always the case in real life – often lower

Illumina, Inc., San Diego, CA, USA (https://www.illumina.com)

Oxford Nanopore Technologies, Inc., Oxford, UK (<u>https://nanoporetech.com</u>)

Sequencing yield

The number of bacterial isolates that can be sequenced with proper accuracy and coverage are different

Illumina	Nanopore
MiSeq: 48	MinIon: 12 - 24
NextSeq: 96 - 192	Theoretically up to 96
	Theoretically the flowcells can be re-used

Numbers are from in-house experience

Not always the case in real life - can be lower or higher depending on setting

Very dependent on the desired application: how accurate do we need to be and what coverage do we need?

Illumina, Inc., San Diego, CA, USA (<u>https://www.illumina.com</u>)

Oxford Nanopore Technologies, Inc., Oxford, UK (https://nanoporetech.com)

Sequencing quality

Difficult to estimate \rightarrow lack of comparative studies

Quainoo et al. 2017, https://doi.org/10.1128/CMR.00016-17 :

Illumina: Error rate < 0.1% (1 incorrect bp / 1.000)

Nanopore: Error rate 12-15% (120-150 incorrect bp / 1.000)

Latest updates to nanopore sequencing achieve:

November 2023

Flow cell	Kit	Sequencing & basecalling parameters	Sample	Raw read accuracy	Output
R10.4.1	Ligation Sequencing Kit V14	400 bps, 5 kHz, HAC basecalling	Human HG002	99.0% (Q20)	•••
R10.4.1	Ligation Sequencing Kit V14	400 bps, 5 kHz, SUP basecalling	Human HG002	99.5% (Q23)	•••
R10.4.1	Ligation Sequencing Kit V14	400 bps, 5 kHz, Duplex basecalling	Human HG002	>99.9% (Q30)	•

Oxford Nanopore Technologies, Inc., Oxford, UK (https://nanoporetech.com)

Linde et al. 2023. Comparison of Illumina and Oxford Nanopore Technology for genome analysis of Francisella tularensis, Bacillus anthracis, and Brucella suis. *https://doi.org/10.1186/s12864-023-09343-z*

Abstract - Results

(...) Flow cell version 10.4 improved sequencing accuracy over version 9.4.1.

(...) The correct (sub-)species were inferred from all tested technologies, individually.

(...) The long reads of ONT allowed to assemble not only chromosomes of all species to near closure, but also virulence plasmids of Ba. anthracis.

(...) For F. tularensis, high-resolution genotyping using cgMLST and core-genome Single-Nucleotide-Polymorphism (cgSNP) typing produced highly comparable results between data from Illumina and both ONT flow cell versions. (...) For Ba. anthracis, only data from flow cell version 10.4 produced similar results to Illumina for both high-resolution typing methods.

(...) However, for Br. suis, high-resolution genotyping yielded larger differences comparing Illumina data to data from both ONT flow cell versions.

Sequencing quality

Ranasinghe et al. 2022.

Comparison of different sequencing techniques for identification of SARS-CoV-2 variants of

concern with multiplex real-time PCR.

https://doi.org/10.1371%2Fjournal.pone.0265220

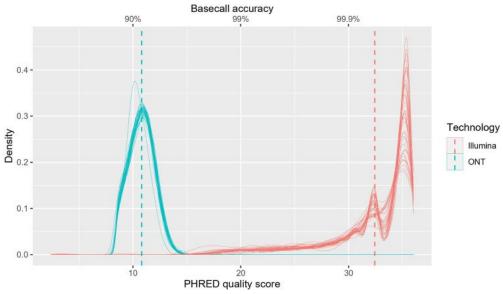


Fig. 1 - PHRED base call quality score distribution of samples sequenced by Illumina and ONT.

Table 1

Basic sequencing matrices for Illumina and Oxford Nanopore (ONT) outputs of 37.

Sequencing metrics		Illumina	ONT		
Number of samples		37	37		
Alignment start and end pos	Alignment start and end positions		54-29903		
Mean Coverage depth		109	266		
Total Number of reads		372,654	9741		
Yielded bases		50,576,802	9,307,884	J	
Fraction of bases aligned	Fraction of bases aligned Mean Read length		0.897		
Mean Read length			945		
Average per read identity	99.9 -	99.6	91.4		
Average PHRED score		32.35	10.78	90% -	
No of SNPs	accuracy	31	36	accuracy	
No of amino acid substitutions		22	25		
No of deletions		14	15		
No of Amino acid substitutions		22	25		
No of frameshift mutations		0	2		
% of ambiguous bases		9%	6%]	
No of samples with < 10% ambiguous bases		25	29		
Successful Pangolin calls		31	34		
Successful Scorpio calls		25	31		
Run time (h) for 96 samples		26	14		
Cost per sample (USD)		~150-250	~10-40	1	
)	

EURGen-RefLabCap best practice workshop – Nanopore sequencing – November and December 2023

Price

Starting costs

Illumina

MiSeq: 96.000 EUR NextSeq: 260.000 EUR NovaSeq: ? 1M ?

Nanopore

MinIon: 950 EUR GridIon: 47.500 EUR PromethIon: 215.000 EUR

Illumina, Inc., San Diego, CA, USA (https://www.illumina.com)

Oxford Nanopore Technologies, Inc., Oxford, UK (<u>https://nanoporetech.com</u>)

Price per isolate after implementation \rightarrow very difficult to calculate

Depends on desired application (i.e. necessary quality and coverage) which influences how many isolates are multiplexed

To be considered:

- Price per library preparation kit / number of libraries that can be prepared by kit
- Price per flowcell
- Person-hours
- Longevity of reagents after first use

Example:

Price

	NextSeq 500	Minlon
Price per library preparation kit	2900	945
Nr. of libraries that can be prepared by kit	96	96
Price per isolate for library preparation	= 30,2 EUR	= 9,8 EUR

	NextSeq 500	Minlon
Price per flowcell	1340	855
Price per isolate for sequencing	Depends on Nr. of isolates that are multiplexed	

	NextSeq 500	NextSeq 500 (after optimization)	Minlon	Minlon (after optimization)	Minlon (in theory)
Nr. of isolates multiplexed	96	192	12	24	96
Price per isolate for sequencing	= 14 EUR	= 7 EUR	= 71,3 EUR	= 35,6 EUR	= 8,9 EUR
Total price per isolate	44 EUR	37 EUR	81 EUR	45 EUR	20 EUR

Plus other reagents/instruments, etc.

Illumina, Inc., San Diego, CA, USA (<u>https://www.illumina.com</u>)

Oxford Nanopore Technologies, Inc., Oxford, UK (<u>https://nanoporetech.com</u>)

DNA extraction

The library preparation protocols are different and therefore influence the choice for DNA extraction

Illumina

DNA can be more fragmented

Less amount of DNA needed

"General" extraction kits

Nanopore DNA should not be fragmented

More amount of DNA needed

Specific extraction kits – examples in upcoming presentations Generally more expensive

Library preparation

The library preparation protocols are different

	Illumina	Nanopore
DNA input	Nextera XT: 1 ng DNA prep: 100-500 ng	PCR Barcoding Kit 24 V14: 1-5 ng Rapid Barcoding Kit 96 V14: 50 ng
Nr. of samples	96 / microtiter plate	PCR Barcoding Kit 24 V14: 24 Rapid Barcoding Kit 96 V14: 96
Time	Nextera XT: 177 min DNA prep: 185 min	PCR Barcoding Kit 24 V14: 180 min Rapid Barcoding Kit 96 V14: 60 min
Special equipment	Thermal cycler Magnetic rack for microtiter plates Plate shaker	Thermal cycler or heating blocks Magnetic racks for eppendorfs Hula mixer (rotator) (opt.) Plate shaker
Safe stopping points	Up to one week	Not described
Library QC	Qubit Bioanalyzer (opt.)	Qubit Bioanalyzer (opt.) Nanodrop (opt.)

Plus loading, starting the run

Illumina, Inc., San Diego, CA, USA (<u>https://www.illumina.com</u>)

Oxford Nanopore Technologies, Inc., Oxford, UK (https://nanoporetech.com)

Applications

Due to the sequencing quality, read length and biochemical principles of the technologies

Illumina

For applications that require high accuracy:

Cluster analyses

Detection of chromosomal point mutations (e.g. associated with AMR)

Nanopore

For applications that require long sequences:

Plasmid analyses

Circularizing genomes

Comparable results, literature, guidance, etc.

Illumina was available years earlier

Illumina

Publications describing:

Optimization of sequencing

Bioinformatics tools

Comparison of tools

QC control and benchmarking

Thresholds for clustering

Performance and expected results per species

Benchmarking datasets

Harmonised protocols

Etc..

Nanopore

Not a lot yet - examples in upcoming presentations

Jette Sejer Kjeldgaard jetk@food.dtu.dk

State-of-the-art – literature on ONT sequencing applied to microbiology research and public health surveillance

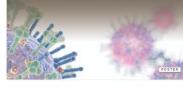
EURGenRefLabCap Best Practice Workshop

State-of-the-art – literature on ONT sequencing applied to microbiology research and public health surveillance

Jette S. Kjeldgaard (jetk@food.dtu.dk) Global Capacity Building

Current applications of ONT sequences

- Broad range of applications
 - -DNA/RNA
 - Transcriptomics
 - Metagenomics



Characterising somatic structural variation in

colorectal cancer with long nanopore reads

STRUCTURAL VARIATION | WHOLE GENOME | PROMETHION |

Case study | 25 May 2023

Rapid decentralized nanopore sequencing of

full-length influenza A genomes PDF

Comprehensive characterisation of repeat expansions in neurodegenerative diseases with long nanopore reads

INFECTIOUS DISEASES Poster | 15 May 2023 HUMAN GENONICS Case study | 2 February 2022

WGS of a cluster of MDR Shigella sonnei utilising Oxford Nanopore R10.4.1 long-read sequencing

NICROBIOLOGY INFECTIOUS DISEASES WHOLE GENOME Publication | 15 November 2023 From Journal of Antimicrobial Chemotherapy

Targeted haplotyping in pharmacogenomics using Oxford Nanopore Technologies' adaptive sampling

2

TARGETED HUMAN GENOMICS PROMETHION Publication I 13 November 2023 From Frontiers in Pharmacolo

. . . .

DTU

WGS of a cluster of MDR Shigella sonnei utilising Oxford Nanopore R10.4.1 long-read sequencing

NICROBIOLOGY INFECTIOUS DISEASES WHOLE GENOME Publication | 15 November 2023 From Journal of Antimicrobial Chemotherapy

Nov 30 2023

Routine metagenomics service for intensive care unit patients with respiratory infection

MINION GRIDION METAGENOMICS

Publication 17 November 2023

From American Journal of Respiratory and Critical Care Medicine

Targeting sex determination to suppress mosquito populations

ANIMAL MINION RNA/CONA Publication | 15 November 2023 From bioRxiv

Nanopore sequencing: insights from neonatal intensive care to cancer

PROMETHION CANCER RESEARCH CLINICAL RESEARCH Video | 15 November 2023

Publication | 15 November 2023 From bioRxiv

ALS/FTD precision medicine

Creation of de novo cryptic splicing for

Insights into spinach domestication from genome sequences of two wild spinach progenitors, Spinacia turkestanica and S. ... PLANT DE NOVO ASSEMBLY Publication I 13 November 2023 From bioRxiv

EURGen Best practice Course

https://nanoporetech.com/resource-centre DTU

Subscribe

Get started Talk to us

Applications

HOME / Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes (DNA) sequencing, as well as (RNA) and gene expression analysis and future technology for analysing proteins.

Research areas

Microbiology Human genetics Microbiome Clinical research Cancer Plant Transcriptome Animal Population genomics COVID 19 Infectious disease Environmental research & conservation

Investigations

Structural variation Gene expression Splice variation Fusion transcripts Single cell

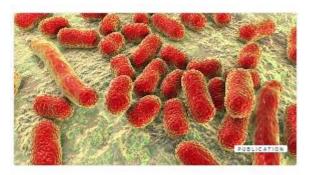
SNVs and phasing Identification Assembly Epigenetics Chromatin conformation

Techniques

Whole genome **RNA & cDNA sequencing** Short fragment mode

Targeted

Metagenomics

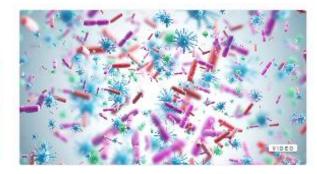

DTU

Current applications of ONT sequences

- Broad range of applications
 - Diagnostics
 - AMR analysis
 - Plasmid analysis
 - Outbreak detection

WGS of a cluster of MDR Shigella sonnei utilising Oxford Nanopore R10.4.1 long-read sequencing

WICROBIOLOGY [INFECTIOUS DISEASES] [WHOLE GENOME] Publication | 15 November 2023 From Journal of Antimicrobial Chemotherapy


Nov 30 2023

Routine metagenomics service for intensive care unit patients with respiratory infection

MINION GRIDION METAGENOMICS

Publication | 7 November 2023 From American Journal of Respiratory and Critical Care Medicine

Targeted nanopore sequencing for bacterial and viral classification

(VIDEO) [INFECTIOUS DISEASES] [MICROBIOLOGY] Video | 12 October 2023

Application of nanopore sequencing to identify antimicrobial resistance genes, mobile genetic elements and virulence fac...

CLINICAL RESEARCH [WICROBIOLOGY] [INFECTIOUS DISEASES] Publication | 26 October 2023 From bioRxiv

https://nanoporetech.com/resource-centre

Diagnostics

- Single isolate sequencing
- Community sequencing
 - Metagenomics
 - Direct specimen testing
 - Wastewater surveillance

• Nanopore White Papers:

Portable sequencing

Malaria genomic surveillance using nanopore sequencing: Shifting the focus into endemic countries

https://communities.springernature.com/amp/posts/malari a-genomic-surveillance-using-nanopore-sequencingshifting-the-focus-into-endemic-countries

Sequencing DNA in a remote rainforest

using nanopore technology

In case of allegations of an intentional cause for a biological threat or disease outbreak, an investigation for verification purposes needs to be able to discriminate between a deliberate release of an agent and the natural background.

DTU

doi: 10.1093/gigascience/giy033

Diagnostics using portable sequencing - example

2. Case presentation

On February 15, 2022 a male toddler 3 years of age, was brought to Machame Lutheran Hospital located in Hai district in Kilimanjaro region with a history of diarrhea and vomiting for the past week. The patient has been vomiting three times a day and passing out watery stool occasionally with blood stains. This was accompanied by on-and-off fever, especially during the night. The patient had been sent to a nearby health center before coming to Machame Lutheran Hospital. At the previous health center, the patient was treated (medication could not be tracked) with no improvement and hence referred to Machame Lutheran Hospital for further management. The patient had no history of admission due to the current illness.

On examination, the toddler was looking ill, clinically pale, with no jaundice observed, wasted, unhappy, weak with a swollen face, and not dehydrated with a body temperature of 38.5 °C. The provisional diagnosis declared acute watery diarrhea with no dehydration, amoebic dysentery, acute malnutrition, and severe anemia. The management plan was as follows admission at the children's

Nanopore sequencing technology for clinical diagnosis of infectious diseases where laboratory capacity is meager: A case report

Happiness H. Kumburu ^{a,b,c,*}, Mariana Shayo ^{c,**}, Marco van Zwetslaar ^b, Judith Njau ^b, Davis J. Kuchaka ^{b,f}, Ignas P. Ignas ^b, Boaz Wadugu ^b, Robert Kasworm ^e, Lazaro J. Masaki ^e, Malte B. Hallgren ^d, Philip T.L.C. Clausen ^d, Blandina Theophil Mmbaga ^{a,b,c}, Frank M. Aarestrup ^d, Tolbert B. Sonda ^{a,b,c}

Diagnostics using portable sequencing – example

Table 1

Relative abundance of bacterial species identified.

Bacterial species	Number of bases	Relative abundance	2
Escherichia coli*	1103065	22.66%	—
Comamonas kerstersii	904446	18.58%	East roomanca
BIfidobacterium kashiwanohense	499159	10.25%	Fast response
Desulfovibrio vulgaris	341562	7.02%	
Parabacteroides distasonis	311669	6.40%	
Collinsella aerofaciens	274892	5.65%	-Species ID
Lactobacillus ruminis	189420	3.89%	
Sutterella wadsworthensis	156074	3.21%	
Roseburia hominis	130953	2.69%	-Virulence factors
Olsenella sp.	127369	2.62%	
Bifidobacterium longuM	94299	1.94%	
Prevotella melaninogenica	93160	1.91%	
Dysosmobacter welbionis	89796	1.84%	-AMR genes
Prevotella intermedia	89723	1.84%	J
Faecalibacterium prausnitzii	74165	1.52%	¥!!!
Bacteroides uniformis	68538	1.41%	*High resolution!
Intestinimonas Butyriciproducens	68394	1.40%	ingi i cooración.
Bifidobacterium bifidum	62769	1.29%	
Veillonella parvula	45998	0.94%	Non-culturable
Bifidobacterium pseudocatenulatum	38444	0.79%	NULLCUITUIANE
Campylobacter jejuni*	29508	0.61%	
Bifidobacterium catenulatum	27401	0.56%	au abundanca
Prevotella multiformis	24272	0.50%	Low abundance
Prevotella denticola	23245	0.48%	

STATENS

Ш**Я**Ш́

Table 1

Relative abundance of bacterial species identified.

Bacterial species	Number of bases	Relative abundance
Escherichia coli*	1103065	22.66%
Comamonas kerstersii	904446	18.58%
BIfidobacterium kashiwanohense	499159	10.25%
Desulfovibrio vulgaris	341562	7.02%
Parabacteroides distasonis	311669	6.40%
Collinsella aerofaciens	274892	5.65%
Lactobacillus ruminis	189420	3.89%
Campylobacter jejuni*	29508	0.61%
Bifidobacterium catenulatum	27401	0.56%
Prevotella multiformis	24272	0.50%
Prevotella denticola	23245	0.48%

Pathogens. 2022 Sep; 11(9): 1032. Published online 2022 Sep 12. doi: 10.3390/pathogens11091032 PMCID: PMC9504711

PMID: 36145464

The Emergence of the Genus Comamonas as Important Opportunistic Pathogens

Metagenomics for diagnostics

- Respiratory metagenomics (RMg) holds promise as a first-line diagnostic test for lower respiratory tract infections.
- In principle, it rapidly detects all potential pathogens along with antimicrobial resistance determinants and provides sequence typing for infection control or public health actions.

American Journal of Respiratory and Critical Care Medicine

Home > American Journal of Respiratory and Critical Care Medicine > List of Issues > Just Accepted

Routine Metagenomics Service for Intensive Care Unit Patients with Respiratory Infection

Themoula Charalampous , Adela Aloclea-Medina , Luke B. Snell , Christopher Alder , Mark Tan , Tom G. S. Williams , Noor Al-Yaakoubi , Gul Humayun , Christopher I S Meadows , Duncan L.A. Wyncoll , Richard Paul , <u>Show All...</u>

Fastidious or unexpected organisms were reported in 21 samples including anaerobes (n=12)

Mycobacterium tuberculosis, Tropheryma whipplei Cytomegalovirus

Legionella pneumophila ST1326

Staphylococcus aureus, Streptococcus pyogenes,

S. dysgalactiae subspecies equisimilis

Pr

Aspergillus fumigatus

Metagenomics pilot study

DTU

Nov 30 2023

- See workflow in the paper linked below
- During the first 15-weeks RMg provided same-day results for 110 samples (86%) with median turnaround time of 6.7hrs
- RMg was **93% sensitive** and 81% specific for clinically-relevant pathogens compared with routine testing.
- 48% of RMg results informed antimicrobial prescribing changes (22% escalation; 26% de-escalation) with escalation based on speciation in 20/24 cases and detection of acquired-resistance genes in 4/24 cases

AMR analysis - plasmids

- Advantages
 - Fast answer
 - Real-time sequencing
 - Full genome assembly
 - Full plasmid assembly

Application of nanopore sequencing to identify antimicrobial resistance genes, mobile genetic elements and virulence factors in clinical isolates

Rachel Kimani, Sebastian Musundi, Patrick Wakaba, David Mbogo, Suliman Essuman, Bernard N. Kanoi, Jesse Gitaka

Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data

<u>Ruichao Li,^{1,2} Miaomiao Xie,¹ Ning Dong,¹ Dachuan Lin,^{1,}</u> <u>Edward Wai-Chi Chan,² and Sheng Chen^{1,2}</u>

In an experiment by Li *et al.*, a single nanopore read from a carbapenem-resistant *Escherichia coli* strain was shown to span an entire plasmid of >90 kb in length³⁰.

Plasmid hybrid assembly

Highly accurate-single chromosomal complete genomes using IonTorrent and MinION sequencing of clinical pathogens

Karthick Vasudevan¹, Naveen Kumar Devanga Ragupathi¹, Jobin John Jacob, Balaji Veeraraghavan 2 🖂

Requires both short-read and long-read sequences

Plasmid hybrid assembly approaches

- We benchmarked the hybrid assembly approaches of
- MaSuRCA, SPAdes, and Unicycler
- for bacterial pathogens using Illumina and Oxford Nanopore sequencing by determining genome completeness and accuracy, antimicrobial resistance (AMR), virulence potential, multilocus sequence typing (MLST), phylogeny, and pan genome

Research article Open access Published: 14 September 2020

Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing

Zhao Chen, David L. Erickson & Jianghong Meng

DTU

DTU

Plasmid analysis – ONT only

- Before Illumina/Sanger sequencing
 - high-quality plasmid sequence is achieved through capillary-based sequencing, requiring customized sets of primers for each plasmid

Complete sequence verification of plasmid DNA using the Oxford Nanopore Technologies' MinION device

<u>Scott D. Brown, Lisa Dreolini, Jessica F. Wilson, Miruna Balasundaram</u> & <u>Robert A. Holt</u> [™]

<u>BMC Bioinformatics</u> 24, Article number: 116 (2023) <u>Cite this article</u>

DTU

Comparison of methods for plasmid assembly

• See table in paper listed below

Comparison of ONT library preps

- Oxford Nanopore Technologies (ONT) sequencing platforms currently offer two approaches to whole-genome native-DNA library preparation: **ligation and rapid**.
- Comparison of these two approaches for assessing their ability to recover small plasmid sequences.
- DNA sequenced from seven plasmid-rich bacterial isolates in three different ways:
 - ONT ligation, ONT rapid and Illumina.
- Using the Illumina read depths to approximate true plasmid abundance
 - small plasmids (<20 kbp) were underrepresented in ONT ligation read sets but were not underrepresented in ONT rapid read sets.

> Microb Genom. 2021 Aug;7(8):000631. doi: 10.1099/mgen.0.000631.

Recovery of small plasmid sequences via Oxford Nanopore sequencing

Ryan R Wick ¹, Louise M Judd ¹, Kelly L Wyres ¹, Kathryn E Holt ¹ ²

- Smallest plasmids being the most underrepresented in ONT ligation read sets.

- Lower rates of chimaeric reads in the rapid read sets relative to ligation read sets.
- When small plasmid recovery is important, ONT rapid library preparations are preferable to ligation-based protocols

DTU

DOI: 10.1099/mgen.0.000631

Outbreak investigation with ONT

- ONT applied to
 - produce complete reference sequences
 - cluster detection

To utilize long-read nanopore sequencing (R10.4.1 flowcells) for WGS of a cluster of MDR *Shigella sonnei*, specifically characterizing genetic predictors of

antimicrobial resistance WGS of a cluster of MDR Shigella sonnei utilizing Oxford Nanopore R10.4.1 longread sequencing

Gordon Ritchie ➡, Samuel D Chorlton, Nancy Matic, Jennifer Bilawka, Leah Gowland, Victor Leung, Aleksandra Stefanovic, Marc G Romney, Christopher F Lowe

DTU

Outbreak investigation with ONT

Detection of AMR genes AND chromosomal mutations

Cluster isolates were resistant to:

ampicillin ($bla_{\text{TEM-1}}$)

trimethoprim/sulfamethoxazole
(dfA1, dfrA17; sul1, sul2),

azithromycin (ermB, mphA)

ciprofloxacin (*gyrA* S83L, *gyrA* D87G, *parC* S80I) See figure in paper linked below

Figure 1. Phylogenetic tree of Shigella sonnei isolated in our laboratory during the study period, including genomic ...

J Antimicrob Chemother, dkad346, https://doi.org/10.1093/jac/dkad346

DTU Beyond DNA sequencing

- applications of nanopores in
 - molecular sensing and sequencing, chemical catalysis and biophysical characterization.
 - single-protein analysis and sequencing, single-molecule covalent chemistry,
 - clinical sensing applications for single-molecule liquid biopsy,
 - synthetic biomimetic nanopores as experimental models for natural systems.

Nanopore-based technologies beyond DNA sequencing

<u>Yi-Lun Ying</u>, <u>Zheng-Li Hu</u>, <u>Shengli Zhang</u>, <u>Yujia Qing</u>, <u>Alessio Fragasso</u>, <u>Giovanni Maglia</u> [™], <u>Amit Meller</u> [™], <u>Hagan Bayley</u> [™], <u>Cees Dekker</u> [™] & <u>Yi-Tao Long</u> [™]

Nature Nanotechnology 17, 1136–1146 (2022) Cite this article

Field sequencing:

Pomerantz et al 2018. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building; doi: 10.1093/gigascience/giy033

Hamilton 2023; <u>https://communities.springernature.com/amp/posts/malaria-genomic-surveillance-using-nanopore-sequencing-shifting-the-focus-into-endemic-countries</u>

Kumburu et al 2023; Nanopore sequencing technology for clinical diagnosis of infectious diseases where laboratory capacity is meager: A case report https://doi.org/10.1016/j.heliyon.2023.e17439

Diagnostics:

Charalampous et al 2023 Routine Metagenomics Service for Intensive Care Unit Patients with Respiratory Infection https://doi.org/10.1164/rccm.202305-09010C

https://nanoporetech.com/resource-centre

Nanopore is linking to new studies including ONT technology

-NB: some are not yet peer reviewed

The also made 'White papers':

- -Large insights into microorganisms
- -New approaches for clinical research

Ana Rita Rebelo anrire@food.dtu.dk

DNA extraction and library preparation for ONT sequencing

DNA extraction

The first step in any sequencing process

The design of the protocol depends on the sequencing technology to be used \rightarrow different specifications for different technologies

In general DNA quality needs to be much higher than for other molecular methods (e.g. PCR)

DNA extraction

In house protocols or commercial kits

Cell lysis

- -- Cell burst with release of intracellular components
- -- Enzymes, temperature, mechanical lysis, detergents, etc.

Precipitation

- -- Separation of the DNA and debris
- -- Organic solvents/alcohols and salts

Clean up

- -- Recovery of DNA and removal of remaining salts and reagents
- -- Organic solvents/alcohols

Resuspension

Many different kits in the market

To consider:

Price Length/duration of protocol Material that is needed Extra reagents

Number of DNA samples in parallel

Scalability

Potential for automatization

Storage conditions of materials Longevity of materials

Safety

Characteristics of the extracted DNA (yield (ng), fragment length, purity, etc.)

Applicability to your purpose

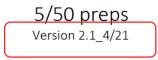
Existing literature

Recommended by ONT

Examples of kits

Kit	Beckman GenFind V3	ThermoFisher MagMax Viral/Pathogen Ultra Nucleic Acid Isolation	Monarch HMW DNA Extraction Kit for Tissue	QIAGEN Genomic-tips 20/G
Principle	Magnetic beads	Magnetic beads	Precipitation of the DNA onto the surface of large glass beads	Gravity-flow, anion- exchange tips (DNA binds to the Resin in the column)
DNA yield	Not described	Not described	> 8 ug	20 μg (500 ug in 500/G kit)
Fragment size	Not described	Not described	> 500 kb	50 – 100 kb
Price approx.	250	600	500	350 (450 for 500/G)
Nr. samples	50	100	50	25
Price per sample	5 EUR	6 EUR	10 EUR	14 EUR

Previously tested at DTU, good performance for ONT


We will use protocol and in-house prepared checklist:

INSTRUCTION MANUAL

be INSPIRED drive DISCOVERY stay GENUINE

Monarch[®] HMW DNA Extraction Kit for Tissue NEB #T3060S/L

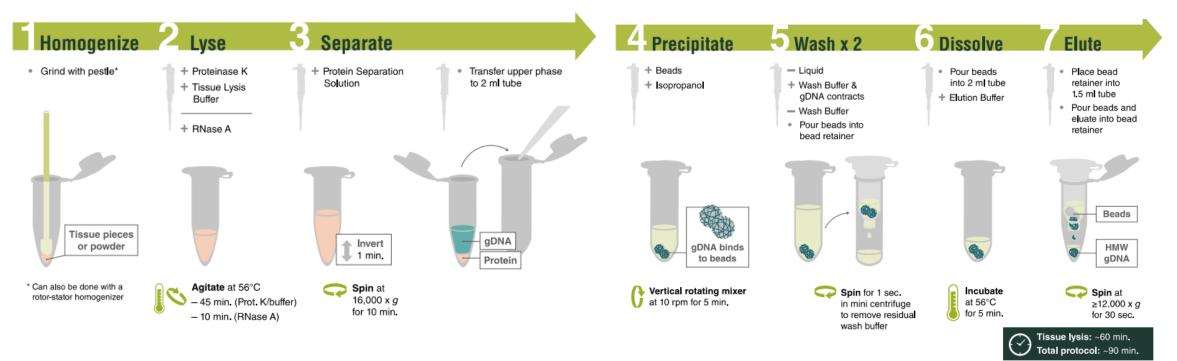



Figure 2: Workflow for Tissue Samples

Bacterial Samples (Gram-negative and Gram-positive): In addition to tissue, the Monarch HMW DNA Extraction Kit for Tissue provides a rapid and reliable process for extracting HMW genomic DNA from bacteria. Separate protocols for processing Gram-negative and Gram-positive bacteria are provided and differ slightly in the initial lysis step. Lysozyme is required to efficiently lyse the bacterial cell wall in these tough-to-lyse samples, and for processing Gram-positive bacteria, a STET buffer is also required. Alternative lysis enzymes (e.g., lysostaphin) may be required for certain Gram-positive bacteria. Ensure that the recommended input amounts of cells are used by measuring the density of bacteria cells in liquid culture (see "Choosing Input Amounts", page 9-10). Cells should be pelleted, and all culture medium removed prior to sample processing. Standard and low input protocols are provided to ensure the buffer volumes are appropriate for the sample input amount used.

From the DNA extraction protocol:

- UHMW DNA needs to be measured several times (~5 times with different aliquots) then average the results for a to estimate the sample concentration
- Qubit
- Nanodrop
- Spectrophotometric analysis of gDNA eluates (absorbance at 260 nm)
- "Analysis by standard gel electrophoresis or other electrophoretic methods (e.g. Bioanalyzer) may not provide suitable resolution. Typically, more than 80% of the material is ≥ 50 kb in length."

DNA dilution and quality control

From ONT:

"We have had good results with DNA which meets the following criteria:"

- Purity as measured using Nanodrop OD 260/280 of 1.8 and OD 260/230 of 2.0–2.2
- Input mass, as measured by Qubit 1 μg
- Average fragment size, as measured by pulsed-field gel analysis (>30 kb)

Oxford Nanopore Technologies, Inc., Oxford, UK (<u>https://nanoporetech.com</u>)

DNA dilution and quality control

Qubit fluorometer (Invitrogen, Carlsbad, CA, USA)



Procedure during the workshop:

Add Qubit Standards working solution from kit for a total volume of 200 µL Vortex tubes for 2-3 sec Incubate at room temperature for Add Qubit 2 min (DNA, RNA) working solution or 15 min (protein) User for a total volume 1-20 µL \1-20 µL \1-20 µL Read tubes in samples of 200 µL **Qubit Fluorometer** *Qubit 4 Fluorometer, Thermo Fhisher Scientific, 2018*

Aim: > 100 ng DNA in 1-10 uL

Approx. Min: 10 ng/uL and Max: 100 ng/uL

Parameter	Library prep kits	
DNA input	PCR Barcoding Kit 24 V14: 1-5 ng Rapid Barcoding Kit 96 V14: 50 ng	We will use 100 ng
Nr. of samples	PCR Barcoding Kit 24 V14: 24 Rapid Barcoding Kit 96 V14: 96	We will use 24 kit
Time	PCR Barcoding Kit 24 V14: 180 min Rapid Barcoding Kit 96 V14: 60 min	We will have 2 h
Special equipment	Thermal cycler or heating blocksMagnetic racks for eppendorfsHula mixer (rotator) (opt.)Plate shaker	
Safe stopping points	Not described	
Library QC	Qubit Bioanalyzer (opt.) Nanodrop (opt.)	We will use Qubit

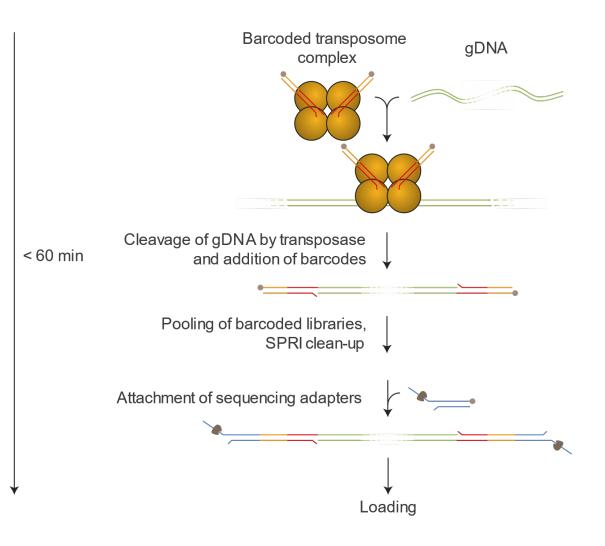
Oxford Nanopore Technologies, Inc., Oxford, UK (https://nanoporetech.com)

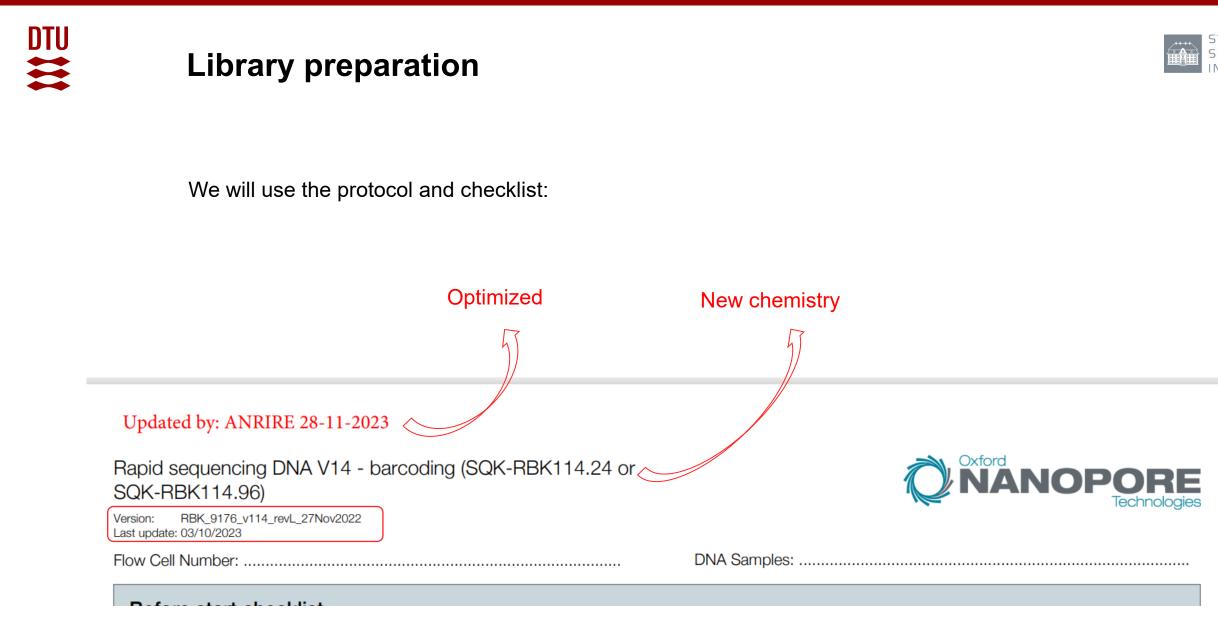
Rapid sequencing DNA V14 - barcoding (SQK-RBK114.24 or SQK-RBK114.96)

- This protocol uses genomic DNA
- For multiplexing 1-96 samples
- Library preparation time ~60 minutes
- High yield
- Fragmentation
- · Compatible with R10.4.1 flow cells

This kit is recommended for users who:

- Wish to multiplex samples to reduce price per sample
- Need a PCR-free method of multiplexing to preserve additional information such as base modifications
- Require a short preparation time
- · Have limited access to laboratory equipment


Oxford Nanopore Technologies, Inc., Oxford, UK (https://nanoporetech.com)



- Tagment your DNA using the Rapid Barcodes in the kit; this simultaneously attaches a pair of barcodes to the fragments
- Pool and clean-up the barcoded samples
- Attach sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell

Oxford Nanopore Technologies, Inc., Oxford, UK (https://nanoporetech.com)

Oxford Nanopore Technologies, Inc., Oxford, UK (<u>https://nanoporetech.com</u>)

Quality control:

Qubit measurement of the pooled libraries

Aim: 20 ng/uL \rightarrow because for the following step we want > 200 ng of DNA in 11 uL

Niamh Lacy-Roberts *nlac*@food.dtu.dk

Troubleshooting ONT runs

Contaminants

- Chemical components used in DNA extraction methods can be carried over from the extraction procedure and contaminate the extracted DNA sample.
- These contaminants can have a significant effect on downstream library preparation efficiency, and therefore **sequencing throughput**.

Ethanol and Isopropanol

- The presence of residual ethanol and isopropanol in extracted DNA can lead an overestimation of the concentration of DNA that is present in your sample.
- They can also lead to a reduction in the measured A260/280 and A260/230 ratios.
- ONT found that the presence of some ethanol in the input sample can be tolerated before performance might start to be adversely affected:
 - the Ligation Sequencing Kit can tolerate up to 20% ethanol contamination
 - and the Rapid Sequencing Kit can tolerate up to ~7.5% ethanol contamination.
- ONT found that the presence of up to ~7.5% isopropanol in the input sample can be tolerated by the Rapid Sequencing Kit, but the presence of any isopropanol might adversely affect the performance of the Ligation Sequencing Kit.

EDTA

DTU

- The presence of EDTA in extracted DNA can lead large perturbations in the nanodrop spectrum and A260/280 and A260/230 ratios.
- It can also lead to an overestimation of the concentration of DNA that is present in your sample.
- ONT found that the presence of some EDTA in the input sample can be tolerated by both the Ligation Sequencing Kit and the Rapid Sequencing Kit, before performance might start to be significantly affected:
 - the Ligation Sequencing Kit can tolerate up to 10 mM EDTA contamination
 - and the Rapid Sequencing Kit can tolerate up to 5 mM EDTA contamination

NaCl

DTU

- The presence of NaCl in extracted DNA does not appear to perturbation nanodrop spectra or A260/280 and A260/230 ratios.
- ONT found that the presence of up to 100 mM NaCl in the input sample can be tolerated by both the Ligation Sequencing Kit and the Rapid Sequencing Kit.

Guanidinium chloride and Guanidinium isothiocyanate

- The presence of guanidinium chloride in extracted DNA can significantly perturb nanodrop spectra, particularly with respect to the A260/230 ratio.
- ONT found that the presence of up to 100 mM guanidinium chloride in the input sample can be tolerated by both the Ligation Sequencing Kit and the Rapid Sequencing Kit.
- The presence of guanidinium isothiocyanate in extracted DNA can significantly perturb nanodrop spectra, giving atypical A260/280 and A260/230 ratios, and leading to misquantification of the DNA concentration.
- ONT found that the presence of up to 50 mM guanidinium isothiocyanate in the input sample can be tolerated by both the Ligation Sequencing Kit and the Rapid Sequencing Kit.

DTU

Phenol

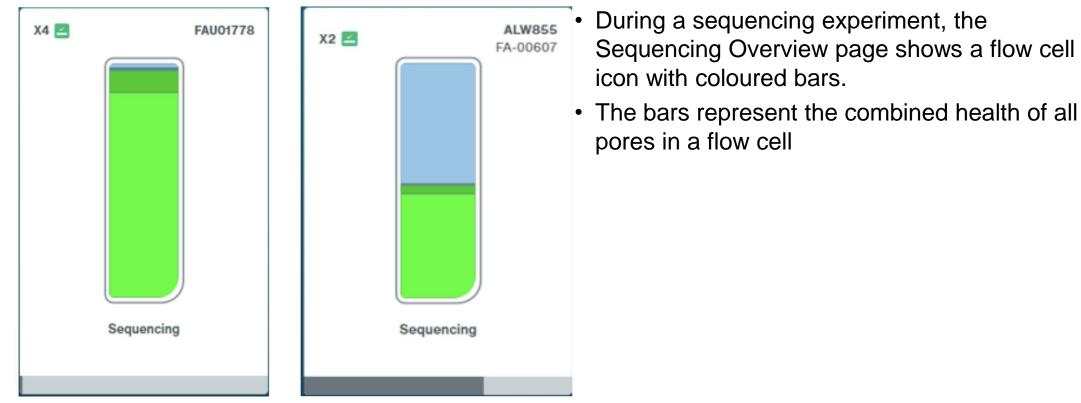
DTU

=

- The presence of residual phenol in extracted DNA can significantly perturb nanodrop spectra, giving atypical A260/280 and A260/230 ratios, and lead to overestimation of the DNA concentration.
- ONT found that the presence of up to 1% phenol in the input sample can be tolerated by both the Ligation Sequencing Kit and the Rapid Sequencing Kit, before performance might start to be significantly affected.

MinKNOW Interface

		Homepage overview
Start	a.	
Sequencing overview	b.	The MinKNOW Homepage enables the user to navigate to:
✓ Experiments	c. g. h.	a. Start homepage
j≕ System messages	d. 🕞 🕞 🕞 🕞 📊	b. Sequencing Overview of connected flow cells
Host settings	e. Start sequencing Analysis	c. Recent and current Experiments
		d. System Messages
	i	e. Host Settings
		f. Connection Manager to connect with other available devices
	Flow cell check Hardware check	g. Start Sequencing experiment
		h. Post-run Analysis
	k. : More	i. Flow Cell Check
	K. : More	j. Hardware Check
		k. More includes option to generate .mmi from .fasta file or to import a sample sheet
Connection manager	f.	I. Guest/initials to logout

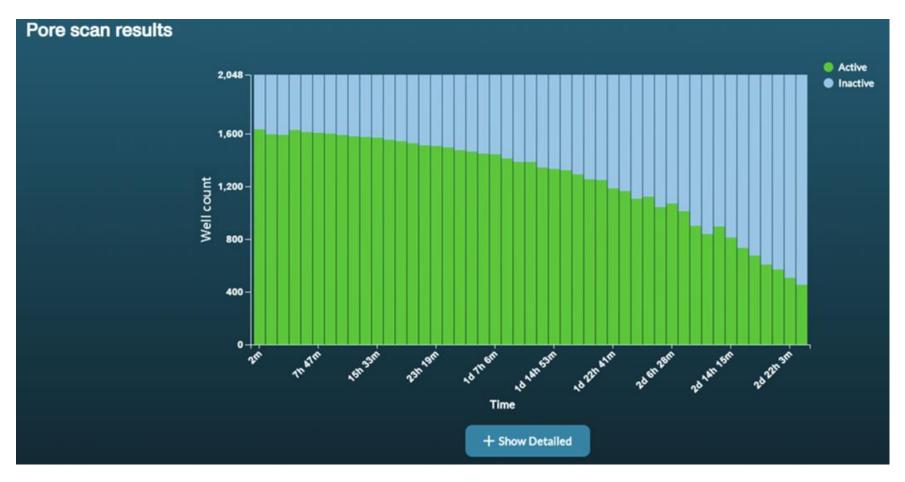


Flow Cell Check

←= MC-111274 REMOTE MC-111274	50		
Start	MC-111274_0 FAN59722	MN31043	FAO39517
Sequencing overview			
✓ Experiments			◎
 System messages Host settings 			
		Read	by for sequencing 90 pores found
Connection manager			

Flow cell health

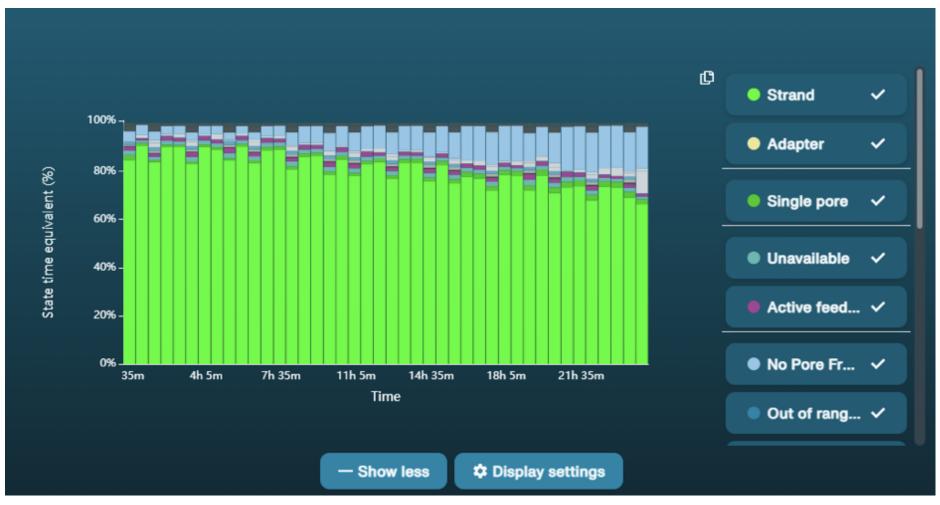
Experiment Summary Information


←= ^{GOR003153} (REMOTE gxb03153								💄 Guest
• Start			40	3_basecalling_test				
III Sequencing overview	> Résume	ause Stop Start por	e scan 👲 Export run r	eport				~ Experiment group
✓ Experiments	Position — Flow cell	ID – Sample ID –	Health Ru	n time —	Run state —	Reads —	Bases —	Basecalled % -
System messages	X1 FAQ1658	80 fast_basecalling	201	m/72h	Active	27.74 k	125.04 Mb basecalled 122.23 Mb estimated	100%
Host settings	X2 FAQ1363	38 fast_basecalling	20	n/72h	Active	30.07 k	141.35 Mb basecalled 136.9 Mb estimated	100%
	X1 FAQ1658	80 no_sample	- 1h	1 m	Complete	89.91 k	413.74 Mb basecalled 399.62 Mb estimated	100%
	X2 FAQ1363	38 no_sample	- 1h	1m	Complete	105.7 k	510.42 Mb basecalled 487.38 Mb estimated	100%
								Scroll right >
	Position X1							× ×
	Experiment grou	up 4_3_basecalling_test		é	Total run time	20m 11s		
	Sample ID Flow cell produc	fast_basecalling ct code FLO-MIN106		1	Temperature	34 °C		
	Kit ID	SQK-LSK109			Voltage	-170 mV		
	Current output directory /data//4.3.basecalling_test/fast_basecalling/202104 Basecall model Fast basecalling			Read count 27.74 k				
	Minimum qscore	e 7		E	stimated bases 1	22.23 Mb		
				В	asecalled bases 1	25.04 Mb		
Application settings								
X Connection manager								

- Minknow will basecall and demultiplex live
- Real time information on flow cell
 health and sequencing

Pore Scan

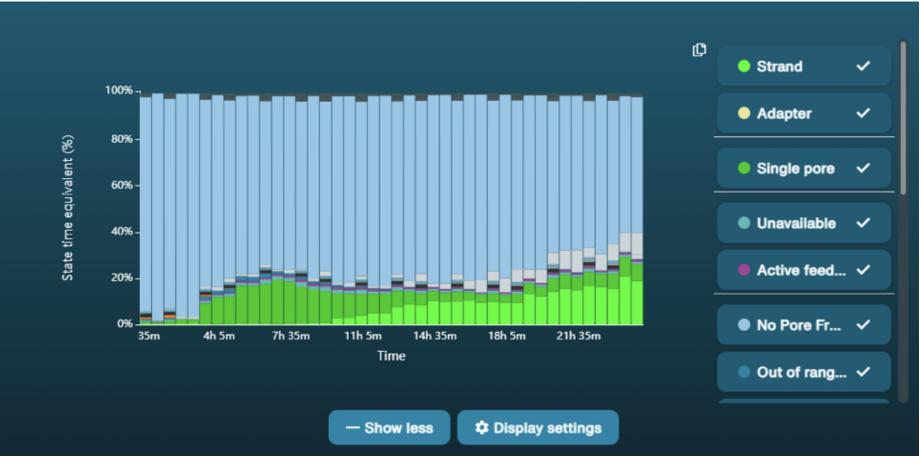
Picture belongs to oxford nanopore (https://store.nanoporetech.com/eu/rapid-barcoding-kit-1.html)



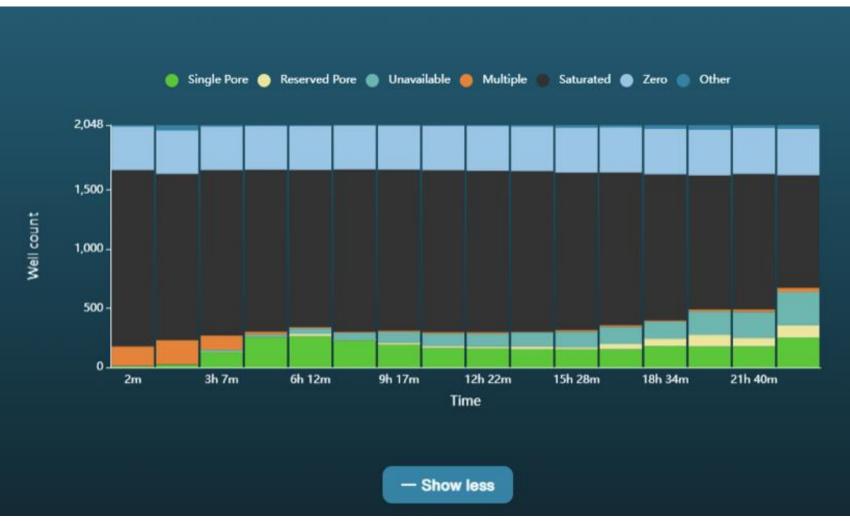
Pore Occupancy



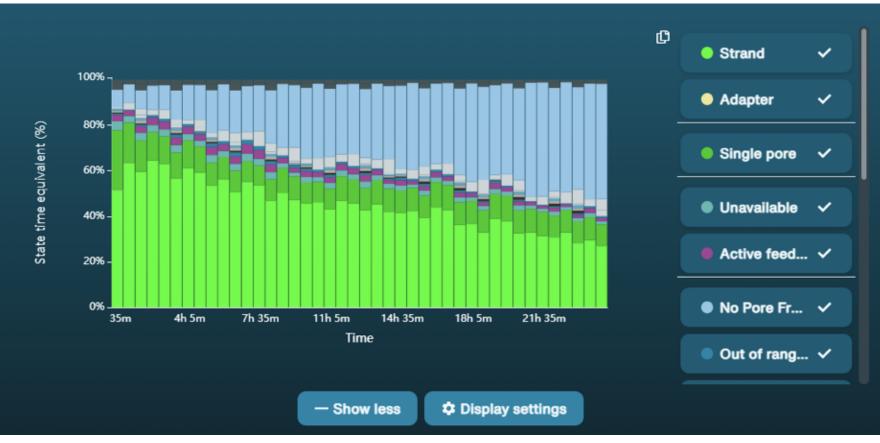
Good library



Channel Blocking



Osmotic Imbalance



Osmotic Imbalance – channel scan

Low Pore Occupancy

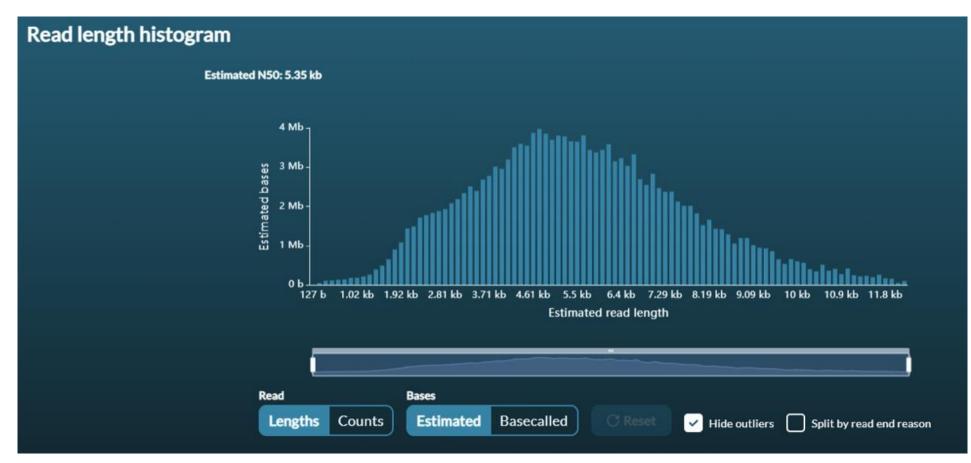
Niamh Lacy-Roberts *nlac*@food.dtu.dk

Introduction of bioinformatics analyses of ONT data

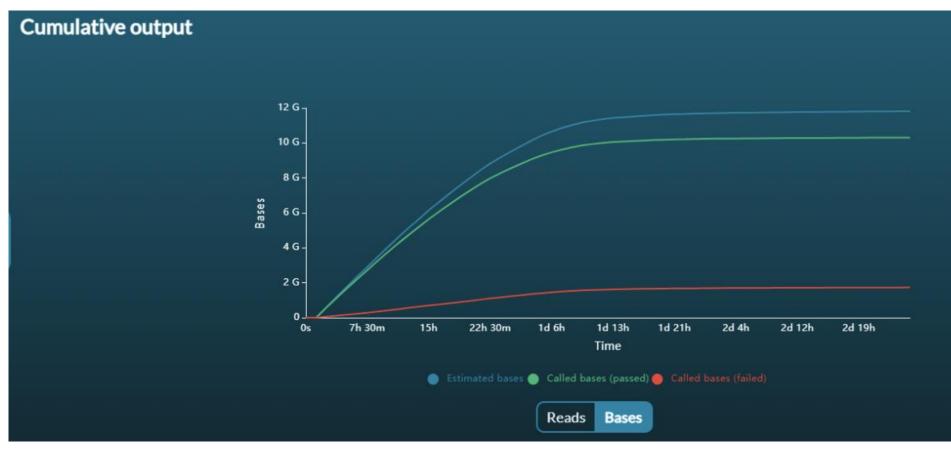
Experiment Summary Information

¢≡	cxe03153 (REMOTE) gxb03153									💄 Guest
•	Start	_	4_3_basecalling_test							
	Sequencing overview		II Pause	Stop 🗸 Start ;	oore scan 👲 Exp	ort run report				~ Experiment group
~	Experiments	Position -	Flow cell ID -	Sample ID —	Health	Run time —	Run state —	Reads -	Bases —	Basecalled % -
-	System messages	X1	FAQ16580	fast_basecalling		20 m / 72 h	Active	27.74 k	125.04 Mb basecalled 122.23 Mb estimated	100%
۰	Host settings	X2	FAQ13638	fast_basecalling		20 m / 72 h	Active	30.07 k	141.35 Mb basecalled 136.9 Mb estimated	100%
		X1	FAQ16580	no_sample	-	lhlm	Complete	89.91 k	413.74 Mb basecalled 399.62 Mb estimated	100%
		X2	FAQ13638	no_sample	-	1h1m	Complete	105.7 k	510.42 Mb basecalled 487.38 Mb estimated	100%
										Scroll right >
		Positi	on X1							
		Expe	riment group	4_3_basecalling_test			🍐 Total run time	20m 11s		
		Sampl	ole ID	fast_basecalling			Temperature	34 °C		
		Flow Kit II	cell product code	FLO-MIN106 SQK-LSK109				-170 mV		
		Baseca	ent output directory			ng/202104				
			call model mum qscore	Fast basecalling 7			Read count	27.74 k		
							Estimated bases 122.23 Mb			
							Basecalled bases	125.04 Mb		
۵	Application settings									
*	Connection manager				••					

- Minknow will basecall and demultiplex live
- Real time information on flow cell
 health and sequencing



Pore Occupancy



Read Length Histogram

Cumulative Output

Barcode read counts

Output files

€	-						S
•	Start	1. Positions	2.Kit	3. Run options	4. Analysis	5. Output	<u>6. Review</u>
	Sequencing overview		Output				
	Experiments		Data saved as				
P	System messages		test/			_	
۰.	Host settings >		Output location ⑦				
			📁 /data/.		۵		
			Output format ⑦				
			Raw reads	Basecalled reads	Aligned reads		
			.POD5	.FASTQ	.BAM		
			.FAST5 (legacy)				
			Filtering ⑦				
			Qscore: 7 Readlength: Unfilte	red Read splitting: Enabled	Options		
			✓ Advanced options				
7	Connection manager	< Back to analysis					Continue to final review »

Picture belongs to oxford nanopore

(https://community.nanoporetech.com/docs/prepare/library_prep_protocols/experiment-companionminknow/v/mke_1013_v1_revcy_11apr2016/starting-a-sequencing-run-on-minion)

- Raw reads output can be saved as .POD5 or .FAST5.
- Basecalled reads are saved as .FASTQ
- Run report contains real-time feedback, such as read quality and length.
- sequencing_summary.txt also contains read quality and length infotmation.

Run Report

DTU

- Run reports contain information about the sequencing run and include performance graphs.
- These graphs can be manually generated during a run as well as being automatically generated once sequencing is complete for MinION Mk1C, GridION and PromethION and MinION Mk1B running on Linux.
- However, for MinION Mk1B running on Windows or Mac, the run reports need to be manually generated by clicking Export run report and selecting which experiment to export to html.
- The run report includes the run summary and configuration, sequence output, run health and run log.
- Troubleshooting suggestions are also available throughout the report, with links to further information available on the Community.

Next steps

- Additional QC metrics can be generated post-sequencing using one of several tools.
- Third party tools exist such as <u>PycoQC</u> which can also be used to generate QC metrics from the sequencing_summary.txt file.
- ONT has a cloud-based tool called EPI2ME, with different workflows that take fastq or fastq.gz files as the input. ONT also has a Desktop application called EPI2ME labs that allows users to run many different workflows.
- Alternatively, you can use third-party tools like <u>NanoPlot</u> and <u>NanoStat</u>.
- For third-party tools, please see their GitHub pages for installation and usage.
- After QC if the FASTQ files, next step is assembling the reads to generate FASTA files...

EURGen-RefLabCap@food.dtu.dk

Thank you on behalf of the EURGen-RefLabCap team

