
EURGen-RefLabCap

Technical training workshop #1

Third day

Tuesday, 8 December 2022

09:00 - 15:30 CET

Third day (physical) - Thursday 8 December 2022, 9:00 - 15:30 CET

9:00 - 9:15: Re-cap and agenda for the day (Jette Sejer Kjeldgaard, DTU)

9:15 - 10:00: Discussion and conclusions of exercise about species identification and subtyping tools (Jette Sejer Kjeldgaard, DTU)

10:00 - 11:00: Exercise about bioinformatics tools for detection of antimicrobial resistance and mobile genetic elements (Markus Johansson, DTU)

11:00 - 11:15: Coffee break

11:15 - 12:00: Discussion and conclusions of exercise about antimicrobial resistance and mobile genetic elements (Markus Johansson, DTU)

12:00 - 12:30: Cluster methods (SNP-based and gene-by-gene) and tools, and the importance of metadata (Ana Rita Rebelo, DTU)

12:30 - 13:30: Lunch break

13:30 - 15:00: Exercise about cluster analysis (Ana Rita Rebelo and Jette Sejer Kjeldgaard, DTU)

15:00 - 15:30: Discussions, wrap-up, goodbye

[15:30: Bus transportation provided from DTU to the hotel]

Jette Sejer Kjeldgaard jetk@food.dtu.dk

Discussion and conclusions of exercise about species identification and subtyping tools

Third day (physical) - Thursday 8 December 2022, 9:00 - 15:30 CET

[8:15: Bus transportation provided from the hotel to DTU]

9:00 - 9:15: Re-cap and agenda for the day (Jette Sejer Kjeldgaard, DTU)

9:15 - 10:00: Discussion and conclusions of exercise about species identification and serotyping tools (Jette Sejer Kjeldgaard, DTU)

10:00 - 11:00: Exercise about bioinformatics tools for detection of antimicrobial resistance and mobile genetic elements (Markus Johansson, DTU)

11:00 - 11:15: Coffee break

11:15 - 12:00: Discussion and conclusions of exercise about antimicrobial resistance and mobile genetic elements (Markus Johansson, DTU)

12:00 - 12:30: Cluster methods (SNP-based and gene-by-gene) and tools, and the importance of metadata (Ana Rita Rebelo, DTU)

12:30 - 13:30: Lunch break

13:30 - 15:00: Exercise about cluster analysis (Ana Rita Rebelo and Jette Sejer Kjeldgaard, DTU)

15:00 - 15:30: Discussions, wrap-up, goodbye

[15:30: Bus transportation provided from DTU to the hotel]

Technical training workshop #1 7-8 December 2022 Jette Sejer Kjeldgaard, DTU

Exercises: tools for species identification and subtyping

What to do when we see discrepancy/inconclusive results?

- MLST's were fine and conclusive
- Serotype:

EURGEN_workshop_isolate_L	https://cge.food.dtu.dk//cgi- bin/webface.fcgi?jobid=6389198800007AFF423CC825	O36:H56 Low ID; 2 O-genes
EURGEN_workshop_isolate_M	https://cge.food.dtu.dk//cgi- bin/webface.fcgi?jobid=6389199500007B1FC7504B0D	O8:H21
EURGEN_workshop_isolate_N	https://cge.food.dtu.dk//cgi- bin/webface.fcgi?jobid=638919A700007BA6842D17CF	O15:H2 2 O-genes (wzx)

• Kmerfinder:

EURGEN_workshop_isolate_L	https://cge.food.dtu.dk//cgi- bin/webface.fcgi?jobid=638F2F3500005A020443E2FC	Escherichia mixed species
EURGEN_workshop_isolate_M	https://cge.food.dtu.dk//cgi- bin/webface.fcgi?jobid=638F2F4200005B4C49148683	Shigella + E. coli
EURGEN_workshop_isolate_N	https://cge.food.dtu.dk//cgi- bin/webface.fcgi?jobid=638F2F4A00005B791C3092ED	E. coli + Enterococcus

Check the sequence quality!

Quality control overview of 14 presumptive E. coli isolates sequenced by Illumina NextSeq

					QUALITY CON	VTROL REP	ORT				
ID FOR COURSE	Bases (MB)	Qual Bases (MB)	Qual bases %	Reads	Qual reads	Qual reads %	insert size	N50	No of contigs	longest contig	total bps in genome
EURGEN_ws_isl_A	663	562	84.73%	4713804	4285976	90.92%	207.85	78310	230	181289	5334643
EURGEN_ws_isl_B	568	409	71.99%	3867662	3140172	81.19%		75652	242	181289	5328985
EURGEN_ws_isl_C	679	493	72.70%	4711578	3827624	81.24%		73855	249	176983	5332638
EURGEN_ws_isl_D	582	414	71.14%	3975566	3199846	80.49%		73855	244	181289	5331209
EURGEN_ws_isl_E	258	185	71.59%	1758396	1419766	80.74%		71096	221	170559	5320663
EURGEN_ws_isl_F	391	283	72.45%	2704100	2198116	81.29%		71065	207	175874	5317604
EURGEN_ws_isl_G	383	307	80.34%	2592340	2301510	88.78%		180901	172	380185	5308247
EURGEN_ws_isl_H	335	266	79.30%	2286734	2013890	88.07%		203076	140	380185	5245654
EURGEN_ws_isl_I	833	714	85.63%	6210610	5648372	90.95%		203307	83	625654	5137317
EURGEN_ws_isl_J	590	527	89.33%	4032660	3756868	93.16%		251536	79	625838	5144977
EURGEN_ws_isl_K	777	642	82.71%	5374492	4818510	89.66%	231.64	217155	89	714995	5168842
EURGEN_ws_isl_L	275	231	84.05%	1976136	1797668	90.97%		226469	40	676641	4471461
EURGEN_ws_isl_M	145	121	84.04%	1061786	961774	90.58%		105253	143	306865	5040601
EURGEN_ws_isl_N	486	379	78.07%	3300292	2818786	85.41%		174166	222	350417	5448589

4

Overview of species determination of 14 presumptive E. coli isolates sequenced by Illumina NextSeq, including subtyping data (cgMLST, rMLST and MLST typing)

Course ID	rMLST output		KmerFinder output (simplified)			cgMLSTF		MLST E. coli Scheme #1		
Samples	Species	% of sup- port	% Query Coverage	% Template Coverage	Species	cgST	No of Allels Found	Similarity	rMLST	MLST
EURGEN_ws_isl_A	E. coli	100%	92.11	96.49	E. coli	36272	2412	95.98	1587	33
EURGEN_ws_isl_B	E. coli	100%	92.15	96.46	E. coli	36272	2409	95.86	1587	33
EURGEN_ws_isl_C	E. coli	100%	92.14	96.49	E. coli	36272	2408	95.82	1587	33
EURGEN_ws_isl_D	E. coli	100%	92.14	96.49	E. coli	36272	2409	95.86	1587	33
EURGEN_ws_isl_E	E. coli	100%	92.14	96.51	E. coli	36272	2407	95.78	1587	33
EURGEN ws isl F	E. coli	100%	92.15	96.46	E. coli	36272	2409	95.86	1587	33
EURGEN_ws_isl_G	E. coli	100%	91.17	95.71	E. coli	9819	2464	98.05	14753	73
EURGEN_ws_isl_H	E. coli	100%	92.3	95.74	E. coli	36	2464	98.05	14753	73
EURGEN_ws_isl_I	E. coli	100%	96.59	95.2	E. coli	3785	2421	96.34	2153	968
EURGEN_ws_isl_J	E. coli	100%	96.46	95.19	E. coli	3785	2423	96.42	2153	968
EURGEN ws isl K	E. coli	100%	97.46	99.71	E. coli	10134	2466	98.13	1503	131
EURGEN_ws_isl_L	E. ruysiae	100%	31.85	26.22	E. coli	55765	2312	92.00	64744	3568
EURGEN_ws_isl_ M	E. coli	98%	89.57	97.09	Shigella sonnei	31173	2350	93.51	ND*	155
EURGEN_ws_isl_N	E. coli / Enterococcus faecalis	88% / 11%	88	93.91	E. coli	41724	2473	98.41	2135	69

ND*: no matching profile for rMLST

Isolate L

		QUALITY CONTROL REPORT									
ID FOR COURSE	Bases (MB)	Qual Bases (MB)	Qual bases %	Reads	Qual reads	Qual reads %	insert size	N50	No of contigs	longest contig	total bps in genome
EURGEN_ws_isl_L	275	231	84.05%	1976136	1797668	90.97%		226469	40	676641	4471461
EURGEN_ws_isl_M	145	121	84.04%	1061786	961774	90.58%		105253	143	306865	5040601
EURGEN_ws_isl_N	486	379	78.07%	3300292	2818786	85.41%		174166	222	350417	5448589

L:

N50 is OK

Longest contig is OK

of contigs surprisingly low

total bases also low

KmerFinder-3.2 Server - Results

KmerFinder 3.2 results:

Template	Num	Score	Expected	Template_length	Query_Coverage	Template_Coverage	Depth	tot_query_Coverage	tot_template_Coverage	tot_depth	q_value	p_value
NZ_CP015229.1 Escherichia coli strain 06-00048 chromosome, complete genome	8022	46424	26	175299	31.85	26.22	0.25	31.85	26.22	0.25	46344.96	1.0e-26
NZ_CP056159.1 Escherichia marmotae strain RHBSTW-00814 chromosome, complete genome	1993	17722	35	160343	12.16	11.02	0.11	28.69	25.80	0.25	17616.45	1.0e-26
NZ_CP014111.1 Escherichia coli strain FDAARGOS_144 chromosome, complete genome	23581	4902	39	157299	3.36	3.09	0.03	29.11	26.68	0.27	4784.77	1.0e-26
NZ_CP099906.1 Escherichia albertii strain 121_1_EW_A chromosome, complete genome	13469	3864	39	154276	2.65	2.50	0.02	19.29	17.97	0.18	3748.19	1.0e-26
NZ_CP027579.1 Escherichia coli strain 2013C-4282 chromosome, complete genome	10045	2424	42	164029	1.66	1.48	0.01	28.17	24.77	0.25	2300.37	1.0e-26

EXTENDED OUTPUT

3 different Escherichia species?

Input Files: EURGEN_workshop_isolate_L.fa

? Contamination?

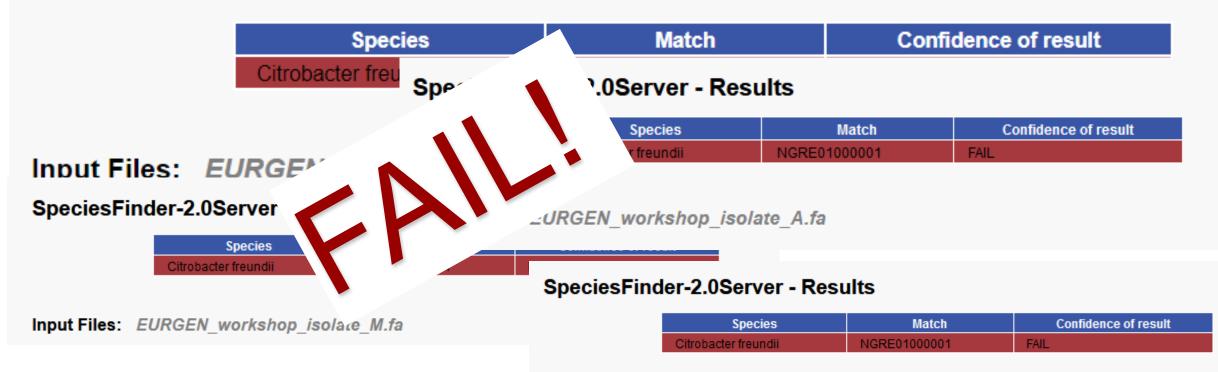
rMLST output

Predicted taxa

RankTaxonSupportSPECIESEscherichia ruysiae100%Proteobacteria > Gammaproteobacteria > Enterobacterales > Enterobacteriaceae > Escherichia > Escherichia ruysiae

Ribosomal MLST

Matching profile


rST: 64744 genus: Escherichia/Shigella species: Escherichia/Shigella sp. A fourth Escherichia species???

8

Consult more analysis tools?

SpeciesFinder-2.0Server - Results

Input Files: EURGEN_workshop_isolate_N.fa

9

rMLST output

Predicted taxa

RankTaxonSupportSPECIESEscherichia ruysiae100%Proteobacteria > Gammaproteobacteria > Enterobacterales > Enterobacteriaceae > Escherichia > Escherichia ruysiae

Ribosomal MLST

Matching profile

rST: 64744 genus: Escherichia/Shigella species: Escherichia/Shigella sp. A fourth Escherichia species???

Isolate L

Conclusion?

How do you proceed with this isolate in the lab?

Can you use the sequence for e.g. resistance profiling?

Isolate M

		QUALITY CONTROL REPORT									
ID FOR COURSE	Bases (MB)	Qual Bases (MB)	Qual bases %	Reads	Qual reads	Qual reads %	insert size	N50	No of contigs	longest contig	total bps in genome
EURGEN_ws_isl_L	275	231	84.05%	1976136	1797668	90.97%		226469	40	676641	4471461
EURGEN_ws_isl_M	145	121	84.04%	1061786	961774	90.58%		105253	143	306865	5040601
EURGEN_WS_ISI_N	486	379	78.07%	3300292	2818786	85.41%		174166	222	350417	5448589

M: QC looks fine!

KmerFinder: *Shigella sonnei* rMLST: *E. coli*

MLST was conclusive Serotype was conclusive

KmerFinder result

KmerFinder-3.2 Server - Results

KmerFinder 3.2 results:

Template	Num	Score	Expected	Template_length	Query_Coverage	Template_Coverage	Depth	tot_query_Coverage	tot_tem
NZ_CP055292.1 Shigella sonnei strain SE6-1 chromosome, complete genome	2810	149067	6	156657	89.57	97.09	0.95	89.57	97.09
NZ_CP010132.1 Escherichia coli strain C10, complete genome	26013	7645	62	165036	4.59	4.42	0.05	80.22	81.73
NZ_CP016546.1 Escherichia coli strain O177:H21 chromosome, complete genome	4209	3092	64	170275	1.86	1.85	0.02	80.70	81.35

EXTENDED OUTPUT

rMLST result

rMLST output:

Predicted taxa

Rank	Taxon	Support	Тахопоту
SPECIES	Escherichia coli	98%	Proteobacteria > Gammaproteobacteria > Enterobacterales > Enterobacteriaceae > Escherichia > Escherichia coli

No rMLST number obtained

Only exact matches are shown above. If a locus does not have an exact match, try querying specifically against that locus to find the closest match.

Shigella spp. & Escherichia coli are very similar!

Mini review

Accurate differentiation of *Escherichia coli* and *Shigella* serogroups: challenges and strategies, <u>https://doi.org/10.1016/j.nmni.2017.09.003</u>

Isolate M

Conclusion?

How do you proceed with this isolate in the lab?

Can you use the sequence for e.g. resistance profiling?

Isolate N

		QUALITY CONTROL REPORT									
ID FOR COURSE	Bases (MB)	Qual Bases (MB)	Qual bases %	Reads	Qual reads	Qual reads %	insert size	N50	No of contigs	longest contig	total bps in genome
EURGEN_ws_isl_L	275	231	84.05%	1976136	1797668	90.97%		226469	40	676641	4471461
EURGEN ws isl M	145	121	84.04%	1061786	961774	90.58%		105253	143	306865	5040601
EURGEN_ws_isl_N	486	379	78.07%	3300292	2818786	85.41%		174166	222	350417	5448589

N:

QC is fine A bit high on total bps?

KmerFinder Result

KmerFinder-3.2 Server - Results

KmerFinder 3.2 results:

Template	Num	Score	Expected	Template_length	Query_Coverage	Template_Coverage	Depth	tot_query_Coverage	tot_template_Coverage	tot_depth	q_value
NZ_CP066836.1 Escherichia coli strain Ec-FL1-1X chromosome, complete genome	19396	159441	6	171412	88.00	93.91	0.93	88.00	93.91	0.93	159420.57
NZ_AP022362.1 Escherichia coli strain E302 chromosome, complete genome	12294	4477	70	173594	2.47	2.34	0.03	53.05	55.76	0.55	4271.09
NZ_CP069996.1 Escherichia coli strain FDAARGOS_1300 chromosome, complete genome	1871	2784	70	172419	1.54	1.65	0.02	53.96	57.12	0.57	2579.04
NZ_CP090558.1 Enterococcus faecalis strain PCH555 chromosome, complete genome	2966	994	40	95697	0.55	1.05	0.01	0.56	1.07	0.01	879.44
NZ_CP035755.1 Escherichia coli E110019 extrachromosomal	16134	40	0	864	0.02	4.63	0.05	0.21	43.63	0.44	38.91

rMLST output

rMLST output:

Predicted taxa

Rank	Taxon	Support	Taxonomy
SPECIES	Escherichia coli	88%	Proteobacteria > Gammaproteobacteria > Enterobacterales > Enterobacteriaceae > Escherichia > Escherichia coli
SPECIES	Enterococcus faecalis	11%	Firmicutes > Bacilli > Lactobacillales > Enterococcaceae > Enterococcus > Enterococcus faecalis

Ribosomal MLST						
Match	Matching profile					
rST:	2135					
genus: Escherichia						
species:	Escherichia coli					

Isolate N

Conclusion?

How do you proceed with this isolate in the lab?

Can you use the sequence for e.g. resistance profiling?

ResFinder result

• Reliable?

ResFinder-4.1 Server - Results

Input Files: EURGEN_workshop_isolate_N.fa

Warning:

One or more resistance genes does not exist in the phenotype database. The Summary table does not take this into account.

escherichia coli complet	e		
Antimicrobial	Class	WGS-predicted phenotype	Genetic background
amikacin	aminogly coside	No resistance	
tigecycline	tetracycline	No resistance	
tobramycin	aminogly coside	No resistance	
cefepime	beta-lactam	No resistance	
chloramphenicol	amphenicol	No resistance	
piperacillin+tazobactam	beta-lactam	No resistance	
cefoxitin	beta-lactam	No resistance	
a mpicillin	beta-lactam	Resistant	blaTEM-1C (blaTEM-1C_FJ560503)
ampicillin+clavulanic acid	beta-lactam	No resistance	
cefotaxime	beta-lactam	No resistance	
ciprofloxacin	quinolon e	No resistance	
colistin	polymyxin	No resistance	
sulfamethoxazole	folate pathway antagonist	Resistant	sul1 (sul1_U12338)
imipenem	beta-lactam	No resistance	
trimethoprim	folate pathway antagonist	Resistant	dfrA12 (dfrA12_AM040708)
n alidixic a cid	quinolon e	No resistance	
ertapenem	beta-lactam	No resistance	
tetracycline	tetracycline	Resistant	tet(B) (tet(B)_AF326777)
fosfomycin	fos fomy cin	No resistance	
ceftazidime	beta-lactam	No resistance	
temocillin	beta-lactam	No resistance	
gentamicin	aminogly coside	No resistance	
meropenem	beta-lactam	No resistance	
a zithromy cin	macrolide	Resistant	mph(A) (mph(A)_D16251)

Markus Johansson, DTU

Exercise about bioinformatics tools for detection of antimicrobial resistance and mobile genetic elements

Detection of antibiotic resistance and estimation of resistance gene mobility

Markus Johansson markjo@food.dtu.dk

DTU

Today

- Prediction of antibiotic resistance genes with ResFinder
 - ResFinder tool
 - ResFinder database
 - PointFinder database
- Estimation of resistance gene mobility using PlasmidFinder and MobileElementFinder
 - Introduction to Mobile Genetic Elements
 - PlasmidFinder tool
 - MobileElementFinder tool

About ResFinder v4.1

ResFinder tool

Detects presence of resistance genes and mutations and annotates expected phenotype

Two versions

- Online tool, <u>https://cge.food.dtu.dk/services/ResFinder/</u>
- Command line, https://bitbucket.org/genomicepidemiology/resfinder/src/master/

Input

• Raw reads or assembled contigs

Reference based prediction against the databases

- Resfinder db, https://bitbucket.org/genomicepidemiology/resfinder_db/src/master/
- Pointfinder db, https://bitbucket.org/genomicepidemiology/pointfinder_db/src/master/

ResfinderFinder database

- Resistance gene sequences grouped by per antibiotic class
- Phenotypic annotations in phenotypes.txt
- Description of genes in bacterial panels in *phenotype_panels.txt*
- Changes to the database in history.txt

Name Size L		Last commit	Message	
₽	.gitignore	11 B	2022-06-16	Update gitignore file
Ð	CHECK-entries.sh 2.3	3 KB	2019-01-23	CHECK-entries: make sure to escape regex chars
₽	INSTALL.py 5.3	4 KB	2022-07-19	change str format to work with python version on server.
₽	README.md 5.3	7 KB	2021-04-20	Added hsitory file to content overview
Ð	VERSION	6 B	2022-10-13	Add VERSION file
₽	aminoglycoside.fsa 196.4	5 KB	2022-10-26	fix amr class of bleO
₽	antibiotic_classes.txt 2.5	1 KB	2022-10-26	fix amr class of bleO
Ð	beta-lactam.fsa 1.74	3 MB	2022-05-03	Adds genes blaGMB-1 and tet(O/32/O)
Ð	colistin.fsa 89.9	6 KB	2022-10-24	remove mcr-9_1_NZ_NAAN01000063.1 from colistin.fsa
₽	config 9	00 B	2022-09-06	Merge branch 'add_misc_class'
Ð	fosfomycin.fsa 18.6	8 KB	2021-03-11	added gar1,fosl1,erm50,qnrb89,catt,qnrb91,aac6,qnrb90,mcr126,mcr127
₽	fusidicacid.fsa 1.9	6 KB	2019-02-20	Update fusidic acid db
₽	glycopeptide.fsa 94.7	5 KB	2022-10-26	fix amr class of bleO
Ð	history.txt 39.8	9 KB	2022-10-24	remove mcr-9_1_NZ_NAAN01000063.1 from colistin.fsa
Ð	macrolide.fsa 170.4	4 KB	4 days ago	remove 5 duplicate genes (crf, aac(6')-lb-cr)
₽	misc.fsa 2.5	1 KB	2022-06-27	fix header and naming related to Misc and lonophores
Ð	nitroimidazole.fsa 6.8	1 KB	2018-05-24	Reformat fosfomycin, fusidic acid and nitroimidazole db
₽	notes.txt 88.3	9 KB	2022-10-26	fix amr class of bleO
₽	oxazolidinone.fsa 42.7	6 KB	4 days ago	remove 5 duplicate genes (crf, aac(6')-lb-cr)
₽	phenicol.fsa 43.5	2 KB	2021-03-11	added gar1,fosl1,erm50,qnrb89,catt,qnrb91,aac6,qnrb90,mcr126,mcr127
₽	phenotype_panels.txt 2.5	5 KB	2021-10-06	changed rifampin for rifampicin phenotype_panels
₽	phenotypes.txt 501.7	3 КВ	2022-10-26	fix amr class of bleO
₽	pseudomonicacid.fsa 9.2	1 KB	2021-03-09	added aac(3)-lla_6_CP023555, blaCMY-150_2_NG_060513, blaCARB-4_1_U14749, mupA_1_X75439, mupA_2_GU237136, mu

ResFinder database – Phenotype annotations

Reference gene

	Ű								
		Associate	d resis	nd resi	stance	e class	3		
					otarrot	o olaot	,		
Dì re	finder_db / phenotypes.txt	Ū							
_									
1	Gene_accession no. Cla				istance Note		red_gene		
2	ant(2'')-Ia_1_X04555	Aminoglycoside						Alternative na	ne aadB
3	ant(2'')–Ia_10_HM367617		Gentamicin,	Tobramycin		Enzymatic	modificati	lon	
4	ant(2'')-Ia_11_HM367620	Aminoglycoside	Gentamicin,	Tobramycin	21873033	Enzymatic	modificati	lon	
5	ant(2'')-Ia_12_HQ880250	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	lon	
6	ant(2'')-Ia_13_DQ176450	Aminoglycoside	Gentamicin,	Tobramycin	16304199	Enzymatic	modificati	on	
7	ant(2'')-Ia_14_DQ266447	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	on	
8	ant(2'')-Ia_15_EF205594	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	on	
9	ant(2'')-Ia_16_HQ386848	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	lon	
10	ant(2'')-Ia_17_JTTZ0100	034 Aminoglycos	ide Gentami	cin, Tobramy	in unpublis	shed Enzyma	atic modifi	cation	
11	ant(2'')-Ia_19_GQ466184	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	on	
12	ant(2'')-Ia_2_JF826500	Aminoglycoside	Gentamicin,	Tobramycin	22271862	Enzymatic	modificati	on	
13	ant(2'')-Ia_20_AY139599	Aminoglycoside	Gentamicin,	Tobramycin	19719593	Enzymatic	modificati	lon	
14	ant(2'')-Ia_3_X74412	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	lon	
15	ant(2'')-Ia_4_AF458082	Aminoglycoside	Gentamicin,	Tobramycin	12384364	Enzymatic	modificati	lon	
16	ant(2'')-Ia_5_AY139594	Aminoglycoside	Gentamicin,	Tobramycin	19719593	Enzymatic	modificati	lon	
17	ant(2'')-Ia_6_AJ871915	Aminoglycoside	Gentamicin,	Tobramycin	unpublished	Enzymatic	modificati	on	
18	ant(2'')-Ia_7_DQ018384	Aminoglycoside	Gentamicin,	Tobramycin	15837385	Enzymatic	modificati	lon	
19	ant(2'')-Ia_8_AY920928	Aminoglycoside	Gentamicin,	Tobramycin	16048994	Enzymatic	modificati	lon	
20	ant(2'')–Ia_9_HM367610	Aminoglycoside	Gentamicin,	Tobramycin	21873033	Enzymatic	modificati	lon	

PointFinder database

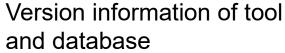
Organized by bacteria

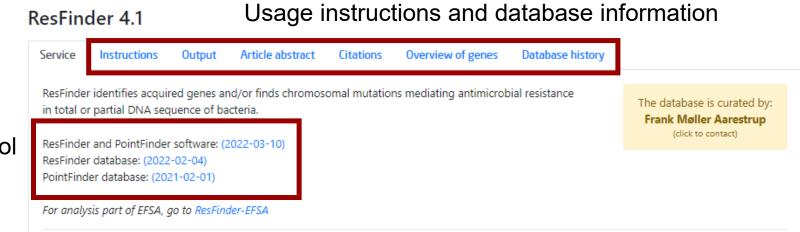
- Each bacteria contain gene reference sequences
- Phenotypic information in phenotypes.txt

	mic Epidemiology / Databases ntfinder_db			Clone
ţ	master V Files V Filter files Q			
	I			
Nam	e	Size	Last commit	Message
	campylobacter		2022-10-10	re-add gyrA_2 in campylobacter
	enterococcus_faecalis		2022-08-23	Recreate deprecated files to keep legacy ResFinder code working
	enterococcus_faecium		2022-08-23	Recreate deprecated files to keep legacy ResFinder code working
	escherichia_coli		2022-10-21	fix header format for 16S genes in escherichia coli
	helicobacter_pylori		2022-08-23	Recreate deprecated files to keep legacy ResFinder code working
	klebsiella		2022-08-23	Revert "Remove deprecated resistens-overview files" This reverts commit 1531ba6bc0a3b657063bbc2ee921a42f
	mycobacterium_tuberculosis		2022-08-23	Revert "Remove deprecated resistens-overview files" This reverts commit 1531ba6bc0a3b657063bbc2ee921a42f
	neisseria_gonorrhoeae		2022-09-19	Fix missing acc no
	plasmodium_falciparum		2022-08-23	Revert "Remove deprecated resistens-overview files" This reverts commit 1531ba6bc0a3b657063bbc2ee921a42f
	salmonella		2022-10-28	re-add arcB in salmonella
	staphylococcus_aureus		2022-09-19	Fix missing acc no
₽	.gitattributes	491 B	2022-06-16	add gitattributes
₽	.gitignore	36 B	2018-12-17	Clean up, remove unnecessary and old files
₽	INSTALL.py	5.31 KB	2022-06-16	Update INSTALL script to not depend on kma_index
Ð	README.md 8	3.49 KB	2019-07-02	Fix gene missing from gene list in staph db
₽	VERSION	6 B	2022-10-13	Add VERSION file
₿	config	665 B	2019-06-27	Fix config and RNA genes

PointFinder database – Phenotype annotations

Reference gene, mutation, position, ref nucleotide


Associated resistance and resistance class


۵	2	pointfinder_db / esche	ichia_coli / phenotypes.txt	
	1	#Gene_accession Ty	eGene Mutation ID odor_pos Ref_nuc Ref_codon Res_codon Class Phenotype PM	MID Mechanism of resistance Notes Required mutation % abundance mutation required
	2	gyrA_1_CP073768.1	DNA ALA-51 51 GCC / \ Quinolone Nalidixic acid 11451702 Target modification	on
	3	gyrA_1_CP073768.1	DNA ALA-67 67 GCC / S Quinolone Nalidixic acid 2168148 Target modification	
	4	gyrA_1_CP073768.1	DNA GLY-81 81 GGT (,D Quinolone Ciprofloxacin 2168148,8392306 Target modified	cation G81D mutation confers resistance to ciprofloxacin only. If G81D and D82G are present
	5	gyrA_1_CP073768.1	DNA GLY-81 81 GGT (,D Quinolone Nalidixic acid, iprofloxacin 2168148,83923	06 Target modification G81D mutation confers resistance to ciprofloxacin only. If G81D and
	6	gyrA_1_CP073768.1	DNA ASP-82 82 GAC Quinolone Ciprofloxacin 8980760 Target modification DA	82G mutation confers resistance to ciprofloxacin only. If D82G and G81D are present simulta
	7	gyrA_1_CP073768.1	DNA ASP-82 82 GAC Quinolone Nalidixic acid, iprofloxacin 8980760 Target	t modification D82G mutation confers resistance to ciprofloxacin only. If D82G and G81D are
	8	gyrA_1_CP073768.1	DNA SER-83 83 TCG : LW,A,V Quinolone Nalidixic a id,Ciprofloxacin 8891148,2	168148,12654733,12654733 Target modification
	9	gyrA_1_CP073768.1	DNA ALA-84 84 GCG / F,V Quinolone Nalidixic acid, iprofloxacin 11451702,7840	592 Target modification Unknown phenotype if A84P or A84V occur alone. Nalidixic acid ar
1	0	gyrA_1_CP073768.1	DNA ASP-87 87 GAC N,G,Y,A,H,V Quinolone Nalidix c acid 12654733,12654733,126	54733,22878251,12654733,1850972 Target modification D87G or D87Y confer resistance to na
1	1	gyrA_1_CP073768.1	DNA ASP-87 87 GAC N,G,Y,A,H,V Quinolone Nalidix c acid,Ciprofloxacin 12654	733,12654733,12654733,22878251,12654733,1850972 Target modification D87G or D87Y confer
1	2	gyrA_1_CP073768.1	DNA GLN-106 106 CAG . R Quinolone Nalidixic acid, iprofloxacin 2168148,18509	70 Target modification Unknown phenotype if Q106H occurs alone. Nalidixic acid and ciproflc
1	3	gyrA_1_CP073768.1	DNA ALA-196 196 GCG / E Quinolone Nalidixic acid, iprofloxacin 14506034 Ta	arget modification Unknown phenotype if A196E occurs alone. Nalidixic acid and ciprofloxaci
1	4	gyrB_1_CP047010.1	DNA ASP-426 426 GAC I N Quinolone Nalidixic acid, iprofloxacin 1656869 Target	t modification
1	5	gyrB_1_CP047010.1	DNA LYS-447 447 AAG I E Quinolone Nalidixic acid 1656869 Target modification	
1	6	parC_1_CP084529.1	DNA ALA-56 56 GCC , Quinolone Nalidixic acid, iprofloxacin 12654733 Ta	arget modification

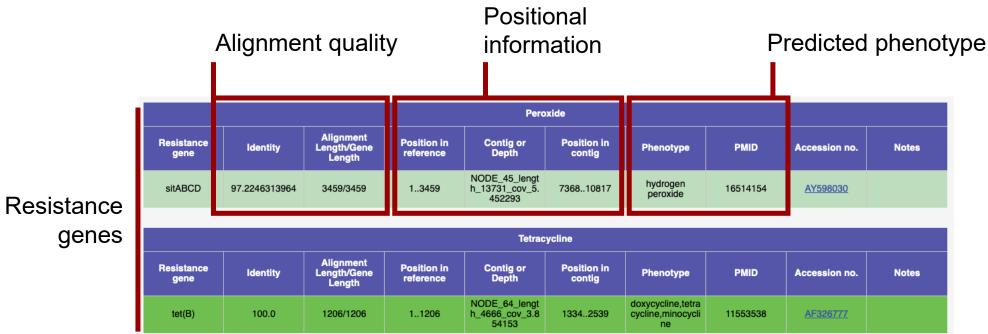
Using ResFinder

https://cge.food.dtu.dk/services/ResFinder/

				C	hromosomal point mutations	Image: A state of the state
	ResFinder				Select threshold for %ID	
030					90 %	~
	Chromosomal point mutations 🗌				Select minimum length	
					60 %	~
	Acquired antimicrobial resistance genes 🗌				Show unknown mutation	s, not found in the database
	Select species					
	Campylobacter spp.* v					
	*Chromosomal point mutation database exists					
	Select type of your reads Assembled Genome/Contigs					
	If you get an "Access forbidden. Error 403": Make sure the start o	^t the web adress is https and not j	ust http. Fix it by clickin	g here.		
	I¥ Choose File(s)					
	Name		Size	Progress	Status	
	O Upload					

Use	ResFinder	A	cquired antimicrobial resistance <u>c</u> Select Antimicrobial configur	
	Chromosomal point mutations 🗌		Select multiple items, with Ctrl-Click (or Cmd-Cl Aminoglycoside Beta-lactam	ick on Mac) - as default all databases are selected
	Acquired antimicrobial resistance genes 🗌		Colistin Disinfectant Fluoroquinolone Fosfomycin	•
Selection of specie specific panel	Select species Campylobacter spp.* ~ *Chromosomal point mutation database exists		Select threshold for %ID 90 % Select minimum length 60 %	~
Input data type	Select type of your reads Assembled Genome/Contigs			
Upload a genome for analysis	If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clice Remove If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clice Size O Upload Remove	cking here. Progress	Status	

DTU


ResFinder result – Summary table

Antimicrobial	Class	WGS-predicted phenotype	Genetic background
amikacin	aminoglycoside	No resistance	
tigecycline	tetracycline	No resistance	
tobramycin	aminoglycoside	No resistance	
cefepime	beta-lactam	No resistance	
chloramphenicol	amphenicol	No resistance	
piperacillin+tazobactam	beta-lactam	No resistance	
cefoxitin	beta-lactam	No resistance	
ampicillin	beta-lactam	Resistant	blaTEM-1B (blaTEM-1B_AY458016)
ampicillin+clavulanic acid	beta-lactam	No resistance	
cefotaxime	beta-lactam	No resistance	
ciprofloxacin	quinolone	No resistance	
colistin	polymyxin	No resistance	
sulfamethoxazole	folate pathway antagonist	No resistance	
imipenem	beta-lactam	No resistance	
trimethoprim	folate pathway antagonist	No resistance	
nalidixic acid	quinolone	No resistance	
ertapenem	beta-lactam	No resistance	
tetracycline	tetracycline	Resistant	tet(B) (tet(B)_AF326777)
fosfomycin	fosfomycin	No resistance	
ceftazidime	beta-lactam	No resistance	
temocillin	beta-lactam	No resistance	
gentamicin	aminoglycoside	No resistance	
meropenem	beta-lactam	No resistance	
azithromycin	macrolide	No resistance	
Antimicrobial	Class	WGS-predicted phenotype	Genetic background
vancomycin	glycopeptide	No resistance	
mupirocin	pseudomonic acid	No resistance	
tobramycin	aminoglycoside	No resistance	
hygromycin	aminoglycoside	No resistance	
isepamicin	aminoglycoside	No resistance	
virginiamycin s	streptogramin b	No resistance	
hydrogen peroxide	peroxide	Resistant	sitABCD (sitABCD_AY598030)
butirosin	aminoglycoside	No resistance	
ampicillin	beta-lactam	Resistant	blaTEM-1B (blaTEM-1B_AY458016)
	aminoglycoside	No resistance	

Gene panel specific result

Other

ResFinder result – full result

			No class defined					
	Mutation	Nucleotide change	Amino acid change	Phenotype	PMID	Notes		
	pmrB:p.E123D	gaa -> gat	e -> d	Unknown phenotype	-	Phenotype not found in database		
utations	16S_rrsH;;16S_rr sH;;vnaf;;16S_rrs H;;jwbg;;16S_rrs H;;gelg;;16S_rrs H;;dymy:g.1093C >G	c -> g	-	Unknown phenotype	·	Phenotype not found in database		
	23S:g.1733G>T	g -> t		Unknown phenotype	-	Phenotype not found in database		
	folP:p.E73A	gaa -> gca	e -> a	Unknown phenotype	-	Phenotype not found in database		

Mu

DTU

Download acquired AMR gene results:

Results as text | Hit in genome sequences | Resistance gene sequences | Results as tabseperated file

Download Chromosomal point mutation results:

Results as tabseperated file Results as a text file

Selected %ID threshold for ResFinder: 90 %

Selected minimum length for ResFinder: 60 %

Selected %ID threshold for PointFinder: 90 %

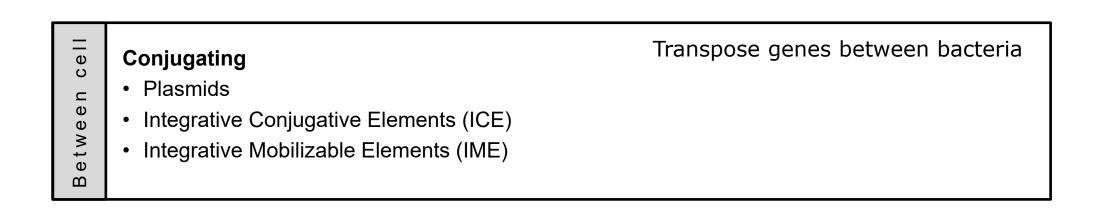
Selected minimum length for PointFinder: 60 %

Inheritance of genes through Mobile Genetic Elements

DTU

Mobile Genetic Elements

- Discrete genetic elements that promote its own mobility within and between DNA molecules
- Divided into different types based on their properties
- Highly diverse, both within and between types
- Generally, provide genetic machinery for their own mobility
- Their transposition is generally repressed, often coupled to SOS response
- Transposition is sensitive to non-lethal concentrations of DNA damaging antibiotics
- Relatively poorly understood, likely many types that have not been discovered
- Work together to mobilize and disseminate genes
- Tend to be carried on one another

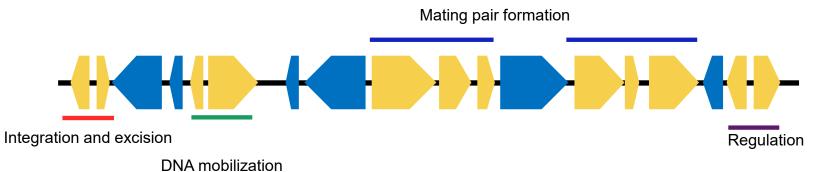


Overview of Mobile Genetic Elements

=	ModulatingMITEsInsertion Sequences	Gene inactivation, up-regulation & repression of gene expression		
Within ce	 Recruiting Integrons Gene transporter Unit transposons Composite transposons 	Recruits and store genes Carries passenger genes		
Between cell	 Conjugating Integrative Conjugative Elements (ICE) Integrative Mobilizable Elements (IME) Plasmids 	Transpose genes between bacteria		

Overview of Mobile Genetic Elements

Conjugating Elements - Plasmids


Plasmids

- Circular
- Located in the cytosol
- Highly variable size
- Variable copy number, low copy & high copy
- Autonomous, can self replicate
- Carry accessory genes and other MGEs
- Traditionally classified into incompatibility groups

Integrative Conjugative Elements (ICE)

- · Located on bacterial chromosome
- Has been grouped with Genomic Islands
- Backbone with core genes clustered according to function
- Carry accessory genes, often antibiotic resistance genes
- Can transfer between bacterial cell through conjugation
- Cannot self-replicate*

Conjugative Transposon (ICE)

ICE backbone

Integration

- Diverse mechanisms for integration
 - Lambda-phage like tyrosine integrase similar to phages
 - DDE-type transposase similar to Transposons / Insertion sequences
 - Serine recombinase similar to Transposons / Insertion sequences

Conjugation

- Similar to plasmid machinery
- Regions similar to plasmid *oriT* and releases in several ICEs

Excision

• Excision rate is influenced by environmental factors, eg growth phase

Overview of Mobile Genetic Elements

=	ModulatingMITEsInsertion Sequences	Gene inactivation, up-regulation & repression of gene expression
ithin cel	Recruiting Integrons 	Recruits and store genes
M	Gene transporterUnit transposonsComposite transposons	Carries passenger genes

Insertion Sequence

- Small, ~ 1-3 kb
- Often bounded by special sequence motifs
 - IR or sub-terminal sequences
- Don't carry accessory genes
- Intracellular mobility, within or between DNA molecules
- Transposition is catalyzed by transposase gene/s
- Insertion site and frequency, determined by transposase and host
- Insertion can leave characteristic Target Site Duplication sequences

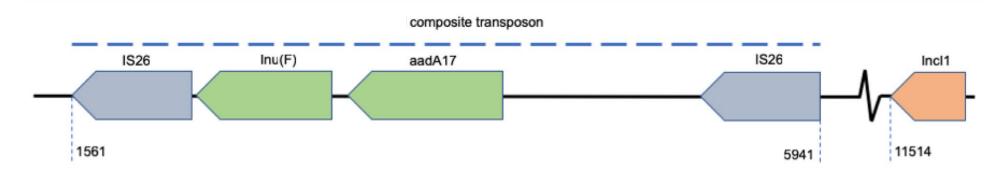
Insertion Sequence (IS)

IS modulation of gene expression

Up-regulation of gene expression

- Carrying outward directed full or partial promoter, ex ISEcp1
- Promoters can respond to environmental stimuli
- Influence DNA topology of nearby genes
- Read through transcription, transposase & nearby gene are co-transcribed

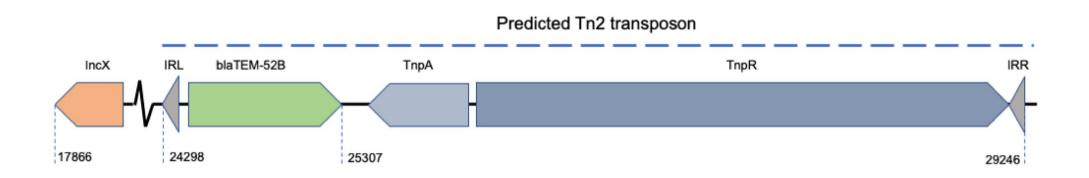
Gene inactivation and repression


- Disruption of genes by insertion into gene or promoter region
- Carrying transcription termination, ex IS1 and IS2

Insertion Sequence (IS)

Composite transposons

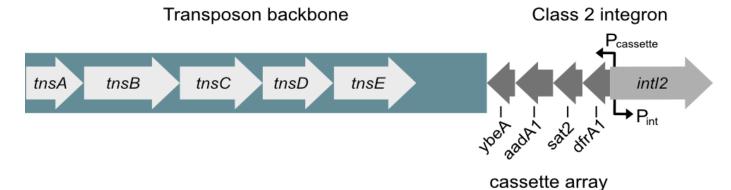
- Consists of two insertion sequences in proximity to one another
- Transposase of one IS acts on IR of nearby MGE instead of itself
- Transpose the two IS with intermediary DNA as one unit
- Can act on non-autonomous elements (MITES etc.)
- Can act on surrogate sequences, random boundary sequences, partial IS etc
- Example Tn10, Tn9 and Tn5 transposons


Unit-transposon

- Intra-molecular transposition
- Typically small, usually 3 10 kb long
- Highly diverse
- Carries accessory genes, many carries antibiotic resistance
- Central to driving the spread of antibiotic resistance
- Divided into families based on transposase and sequence similarity
- Genes are recruited by **homologous recombination** or by carry an **integron**
- Horizontal transposition, between cells, requires mobilization on plasmids

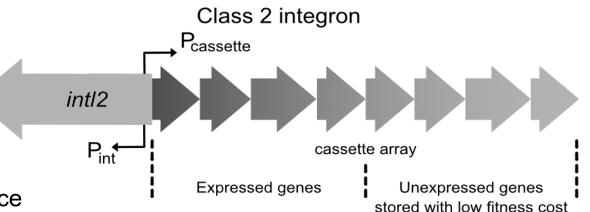
DTU

Tn3-family of transposons


- One of the largest and most diverse families
- Similar genetic layout to insertion sequences
- Many members carry ARGs, resistance to heavy metals
- Replicative transposition, "copy-and-paste" via a DDE-transposase
- Replicate by generating a cointegrate structure that is resolved by a TnpR resolavese gene
- Prevent acquisition additional transposons of the same type. Transposition immunity

DTU

Tn7-family of transposons


- Transposes via "cut-and-paste"
- Special because of its level of control over its transposition
- Genes for transposition called *tnsA*, *tnsB*, *tnsC*, *tnsD* and *tnsE*
 - TnsA, TnsB excises Tn7 from original site
 - TnsC captures target
 - TnsD directs chromosomal integration in gram negative bacteria
 - TnsE directs integration in plasmids by targeting the lagging strand
- Shows target immunity
- Carries a class 2 integron which carries aminoglycoside and trimethoprim resistance

Expression of cassettes & cassette shuffling

- Two part system, stable backbone and flexible gene cassettes
- Backbone contains a recombinase and two promoters, integrase and cassette directed
- Cassettes are small, often contains 1 gene
- Do not contain promoter
- Cannot be maintained in circular form
- Level of expression of a cassette is determined by distance to P_{c} promoter
- Enables harboring of genes at low fitness cost
- **cassette shuffling**, random excision of a cassette followed by its reintegration enables expression of gene
- Enables rapid adaptaion

DTU

Two types of integrons, chromosomal and mobile

Chromosomal Integrons (CI)

- Very large, can contain > 200 cassettes
- Multiple cassettes whose function are unknown
- Very old structures

Mobile Integrons (MI)

- Carries up to 8 cassettes
- Almost exclusively antibiotic and antiseptic resistance
- Exists in 22%-59% of all clinical isolates
- Mobilized on transposons \rightarrow exposed to high diversity of cassettes
- Divided into 5 classes based on *intl* sequence

Interplay of Mobile Genetic Elements

- Integrons "scans" recipient plasmids and exchange gene cassette
- Integrons shuffle gene cassettes
- IS transpose, expression of some genes might be modulated and form composite Tn
- Deletions due to IS transposition
- Transposons move genes to and from plasmids to chromosome
- DNA might be exchanged between similar regions through Homologous recombination

Estimating mobility of resistance genes

Importance of quality input data

- Large mobile elements are hard to assemble using short read data
- Tend to be fragmented into several contigs
- Can be difficulty to accurately determine if a gene is mobilized

PlasmidFinder

https://cge.food.dtu.dk/services/PlasmidFinder/

- Takes raw reads or assembled sequences as input
- Detects plasmid by mapping reads/ aligning to a database of replicon sequences
- Uses KMA for mapping
- Has database with gram-positive and enterobacteriales plasmid replicons
- User definable QC thresholds

Service	Instructions	Output	Article abstract	Citations		
Software version: 2.0.1 (2020-07-01) Database version: (2021-11-29) Test sequence		Henr	The database is curated by: ik Hasman and Alessandra Carattoli (click to contact)			
Select o	latabase					
Gram P	ositive					
Enterot	pacteriales					
Select t 95 %	hreshold for mi	nimum % io	dentity			
		erage				

Select type of your reads

Only data from one single isolate should be uploaded. If raw sequencing reads are uploaded KMA will be used for mapping. KMA supports the following sequencing platforms: Illumina, Ion Torrent, Roche 454, SOLiD, Oxford Nanopore, and PacBio.

PlasmindFinder result

PlasmidFinder-2.0 Server - Results

Organism(s): Enterobacteriales

Enterobacteriales							
Plasmid	Identity	Query / Template length	Contig	Position in contig	Note	Accession number	
IncFIA	99.74	388 / 388	NODE_41_length_16959_cov_3.430430	94919878		<u>AP001918</u>	
IncFIB(AP001918)	98.39	682 / 682	NODE_38_length_20127_cov_3.619100	19612642		<u>AP001918</u>	
IncFII	100	261 / 261	NODE_37_length_22157_cov_4.960554	1923619496		<u>AY458016</u>	

extended output

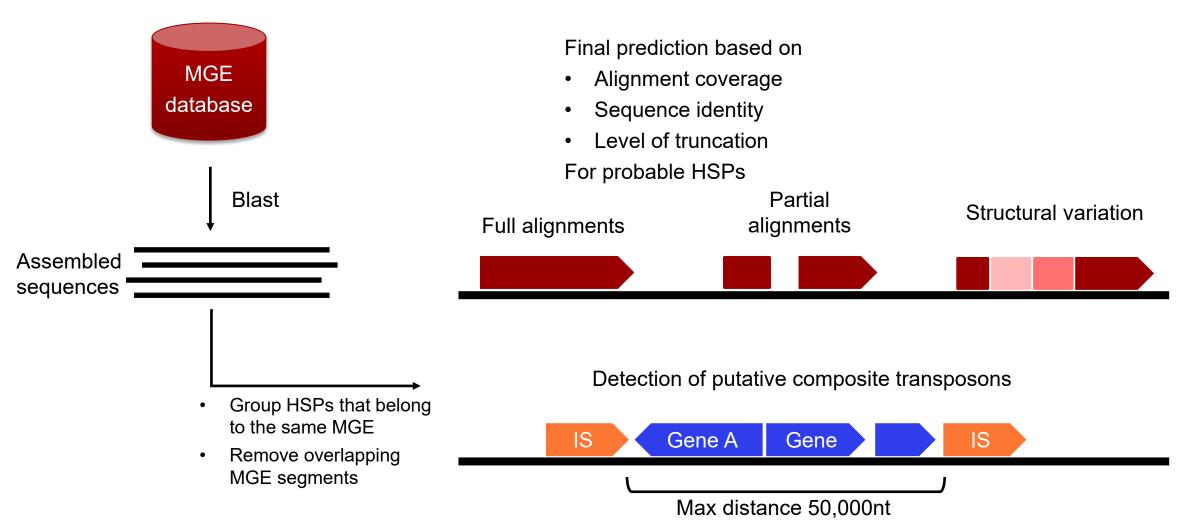
Input Files: DTU2018-646-PRJ1139-Escherichia-coli-1D-019_R1_001.fa

Results as text Results tsv Hits in genome seqs Plasmid sequences

https://cge.food.dtu.dk/services/MobileElementFinder/

- Input: Assembled sequence data (contigs, scaffolds or genomes)*
- Detects MGEs based on sequence similarity to known elements
- Includes a curated database of ~4,400 MGEs

Webserver


- Graphical user interface
- Annotates AMR genes, Virulence factors & Plasmid replicons (with default thresholds)
- User friendly but less flexible

Local installation

- Python package, hosted on PyPI, installed with pip
- Flexible with user customizable thresholds

* High assembly quality is very important

MobileElementFinder prediction method

Output and filtering options https://cge.food.dtu.dk/services/MobileElementFinder/

Result index

	Customize filters			+	
Num displayed MGEs with current filtering criteria of all	MGEFinder Results Sample name: DTU2017-818-contigs Date: 2020-04-07_11:41 MGEfinder version: 0.1.4 MGEdb version: 0.2.1a Displaying: 15 of 144 mobile elements			edicted otated genes	
	Contig	Plasmid	#MGEs	Resistance	Virulence
possible	NODE 10 length 156600 cov 7.73	Flasilliu	#IMGES		Virulence
	NODE 94_length 2336_cov_10.495		0	mdf(A) sul2	
	NODE 72 length 7006_cov 10.258		0	tet(B)	
	NODE_54_length_17584_cov_7.736	Incl1	2	tet(A)	
	NODE 90 length 3004 cov_18.102	morr	1	blaCTX-M-1	
	NODE 18 length 99382 cov 7.759		0	blactive	gad
	NODE 80 length 4790 cov 9.7021		0		tsh
	NODE 30 length 55419 cov 8.081		0		gad
	NODE 82 length 4717 cov 11.130		0		mchC
	NODE 59 length 14247 cov 7.739		0		iroN
	NODE 99 length 1976 cov 12.676		0		ireA
	NODE 68 length 9289 cov 9.8284		0		cma
	NODE 96 length 2278 cov 7.7633		0		iss
	NODE 50 length 22473 cov 9.479		0		mchF
	NODE 75 length 6174 cov 16.739		0		ireA
	NODE 66 length 10147 cov 10.62	IncFIB(AP00191	8) 0		
	NODE 95 length 2315 cov 742.05	Col(MG828)	0		
	NODE_81_length_4744_cov_10.183	IncFIC(FII)	0		
	NODE 9 length 161493 cov 8.314		1		
	NODE_11_length_149764_cov_7.53		2		
	NODE 16 length 102439 cov 7.90		1		
	NODE 32 length 52057 cov 8.437		1		
	NODE 34 length 47159 cov 8.139		1		
	NODE_35_length_46140_cov_8.181		1		
	NODE_36_length_45628_cov_8.144		1		
	NODE_60_length_13780_cov_8.493		1		
	NODE 106 length 1427 cov 14.73		1		
	NODE 113 length 1198 cov 14.83		1		

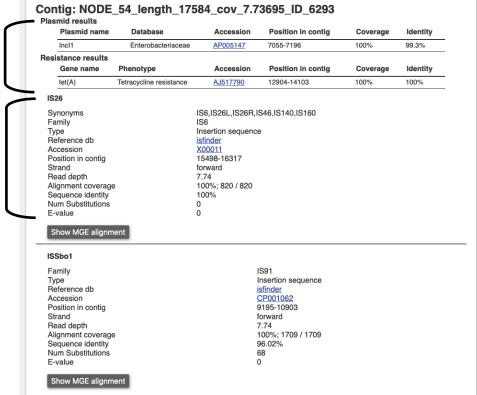
Customizable filters of results

		Customize filters				
		Basic Elements Small MGEs MIC MITE Insertion Sequer	Gene carrying MGEs C Unit-transposons Composite Transposons nces	Conjugative MGEs CIME IME IME CE		
		Quality parameter Minimum alignme	rs ent coverage [%]: 95			
•	Show inferred	Minimum sequentMaximum truncat	ce identity [%]: 90 () ion [nt]: 30 ()			
	composite transposon	Display				
•	Show special cases regardless of other quality parameters	_	nsposon span outside contig ith one conserved end (regardless	of truncation)		

- Filter on MGE types •
- Set minimum quality • parameters

Contig result

https://cge.food.dtu.dk/services/MobileElementFinder/


MobileElementFinder annotates the contigs with *ResFinder*, *PlasmidFinder* and *VirulenceFinder*.

Note: You need to verify that predicted genes are relevant for your specie

Genes & plasmid replicons located on the same contig

Predicted MGEs with metadata and quality metrics Genes carried on MGEs are displayed here

Contig result

Coffee break

Back at 11:15.

Markus Johansson, DTU

Discussion and conclusions of exercise about antimicrobial resistance and mobile genetic elements

Detection of antibiotic resistance genes and estimation of resistance gene mobility

Exercise

Goal of exercise

- 1. Download assembled example genomes
- 2. Submit the genomes for analysis to ResFinder and MobileElementFinder
- 3. Analyze the result,
 - Estimate the antimicrobial resistance profile for each genome
 - Find evidence of genes being mobilized

Download and submit genomes for analysis

1. Download example genomes

https://sciencedata.dk/themes/deic_theme_oc7/apps/files_sharing/public.php?t=91ff6dc9 1c9e514c9b86d0c32e121b42&

- 2. Submit the genomes to ResFinder, PlasmidFinder and MobileElementFinder https://www.genomicepidemiology.org/services/
- 3. Fill in your email to get notification when analysis has finished *Results are stored on CGE servers for a few days before they expire*

Cached example results

ResFinder

- 1D-019 https://cge.food.dtu.dk//cgi-bin/webface.fcgi?jobid=639040350000122370CEE34F
- 1D-020 https://cge.food.dtu.dk//cgi-bin/webface.fcgi?jobid=63909FBC0000641C2F1F51B4

PlasmidFinder

- 1D-019 https://cge.food.dtu.dk//cgi-bin/webface.fcgi?jobid=63904015000011DDE875566C
- 1D-020 https://cge.food.dtu.dk/cgi-bin/webface.fcgi?jobid=639196B700006AB9F5D36DF7

MobileElementFinder

- 1D-019 https://cge.food.dtu.dk//cgi-bin/webface.fcgi?jobid=63903CA7000003739661C6C1
- 1D-020 https://cge.food.dtu.dk//cgi-bin/webface.fcgi?jobid=63909C9B000052291FA575DA

Discussion on how to analyze results

- 1. Evaluate sequencing quality
 - Verify that the sample is not contaminated (Not covered)
 - Verify assembly quality by comparing quality metrics to internal thresholds
- 2. Identify resistance genes, point mutations and their predicted phenotype
- 3. Evaluate if genes are mobilized

1. Evaluate sequencing quality

Sequence QC reports needs to be generated separately by your analysis pipeline.

	FoodQC pipeline												
Sample id	Bases (MB)	Qual Bases (MB)	Qual bases %	Reads	Qual reads %	N50	No ctgs	Longest ctg	total bps				
1D-019	383	307	80.34%	2592340	88.78%	180901	172	380185	5308247				
1D-020	335	266	79.30%	2286734	88.07%	203076	140	380185	5245654				
1D-164	275	231	84.05%	1976136	90.97%	226469	40	676641	4471461				

Or other CGE tools such as KmerFinder and cgMLST finder

KmerFinder										
	Query	Template								
Sample id	Coverage	coverage	Predicted specie							
1D-019	91.17%	95.71%	Escherichia coli							
1D-020	92.3%	95.74%	Escherichia coli							
1D-164	31.85%	26.22%	Escherichia coli							

2. Identify resistance genes and point mutations

Sample Id	Resistance gene	Identity	Alignment Length / Gene Length	Contig	Phenotype (panel)	Phenotypes not in panel
1D-019	blaTEM-1B	100%	861 / 861	NODE_104_length_13 77_cov_71.828000	Ampicillin	Amoxicillin Cephalothin Piperacillin Ticarcillin
1D-019	tet(B)	100%	1206 / 1206	NODE_64_length_46 66_cov_3.854153	Tetracycline	Doxycycline Minocycline
1D-019	sitABCD	97.2%	3459 / 3459	NODE_45_length_13 731_cov_5.452293		Hydrogen peroxide

Questions

- How can low sequence quality impact the result?
- Since the isolate carries a blaTEM-1B can we be certain that its resistant to Ampicillin?
- Can we be certain that the isolate is susceptible to Colistin?

3. Evaluate if genes are mobilized – Sample 1D-019 Displaying: 21 of 117 mobile elements

21 MGEs <u>Detected ARGs</u> • blaTEM-1B
• tet(B)
Detected Plasmid replicons IncFII IncFIB IncFIA
Questions

- Can we be sure that the genes are not mobilized?
- How can we improve analysis performance?

	Plasmid	#NCE-	Pasistanes	Vinulance
Contig	Plasmid	#MGEs	Resistance	Virulence
NODE_64_length_4666_cov_3.8541		0	tet(B)	
NODE_45_length_13731_cov_5.452		0	sitABCD	sitA
NODE_104_length_1377_cov_71.82		0	blaTEM-1B	
NODE_27_length_54246_cov_5.894		1		focl, mcmA,
NODE 35 length 26610 cov 6.707		1		iha, sat,
NODE 19 length 107365 cov 6.12		0		usp
NODE 37 length 22157 cov 4.960	IncFII	0		traT
NODE 42 length 16798 cov 5.300		0		mcbA
NODE 62 length 4985 cov 28.930		0		cea
NODE 15 length 135151 cov 5.39		0		tcpC
NODE 2 length 365325 cov 6.489		2		kpsE, terC,
NODE 91 length 1653 cov 7.0019		0		papA_F43
NODE 31 length 37413 cov 7.273		2		papA_F14, ireA
NODE 8 length 206343 cov 6.251		0		fimH
NODE 54 length 8895 cov 7.1178		0		cnf1
NODE 17 length 122359 cov 5.71		0		irp2, clbB,
		-		-
NODE 4 length 260371 cov 6.074		1		terC
NODE 99 length 1471 cov 7.4553		0		tia
NODE 41 length 16959 cov 3.430	IncFIA	0		
NODE_38_length_20127_cov_3.619	IncFIB(AP001918)	1		

3. Evaluate if genes are mobilized – Sample 1D-020

Sample ID: 1D-020

Detected ARGs

- blaTEM-1B
- tet(B)

Detected Plasmid replicons

- IncFIB
- IncFIA

Displaying: 22 of 115 mobile elements Plasmid Contig Resistance Virulence #MGEs NODE 55 length 8104 cov 63.792... 1 blaTEM-1B NODE 41 length 16005 cov 4.217... 0 sitABCD sitA NODE 65 length 4650 cov 2.9204... 0 tet(B) NODE 52 length 9697 cov 6.0277... hra mchF, focG, ... NODE 30 length 29839 cov 4.983... 1 NODE 14 length 153488 cov 5.77... snid, snid yehB, yehA, ... NODE_1_length_380185_cov_4.836... 2 NODE_23_length_83121_cov_4.785... 0 fyuA, irp2 NODE_63_length_5010_cov_4.7022... 0 iss NODE 4 length 299549 cov 5.204... 1 vat, fdeC, ... NODE_53_length_8895_cov_5.5155... 0 cnf1 kpsE, kpsMII, ... NODE 2 length 360414 cov 5.558... 1

NODE_84_length_1655_cov_6.0700		0	papA_F43
NODE 102 length 1103 cov 11.99		0	papA_F14
NODE 15 length 134815 cov 4.47		0	tcpC
NODE 38 length 18820 cov 2.727	IncFIB(AP001918)	0	
NODE 35 length 19982 cov 2.795	IncFIA	0	
NODE 3 length 305714 cov 6.264		1	

- Detected 22 MGEs
- Several Virulence factors

3. Evaluate if genes are mobilized – Sample 1D-020

 blaTEM-1B is predicted to be mobilized on a Tn2 unit transposon

Tn2							
Family		None					
Туре		Unit transposon					
Reference d	b	tn registry					
Accession		HM749967.1					
Position in c	ontig	249-5198					
Strand		reverse					
Read depth		63.79					
Alignment co	overage	100%; 4950 / 4950					
Sequence id	entity	99.82%					
Num Substit	utions	9					
E-value		0					
ResFinder re	sults						
Gene name	Phenotype	Accession	Position in contig	Coverage	Identity		
blaTEM-1B	piperacillin, cephalothin, ampicillin, amoxicillin, ticarcillin	AY458016	1256-396	100%	100%		

3. Evaluate if genes are mobilized – Sample 1D-020

- A potential ISEc1 composite transposon
- Residing outside of the virulence factors
- One of the included insertion sequences as 127 nt truncation

Contig: NODE_1_length_380185_cov_4.836404 Virulence results

VirulenceFinder db	Protien function	Accession	Position in contig	Coverage	Identity
Escherichia coli	Usher, YHD fimbriael cluster	CP042934	275730-278210	100%	96.57%
Escherichia coli	Outer membrane lipoprotein, YHD fimbriael cluster	<u>CP042934</u>	278226-279260	100%	97.58%
Escherichia coli	Major pilin subunit, YHD fimbriael cluster	<u>CP042934</u>	274417-274959	100%	95.03%
Escherichia coli	Chaperone, YHD fimbriael cluster	<u>CP042934</u>	275040-275714	100%	96.44%
Escherichia coli	Fimbrial protein	UFZT01000001	20163-20729	100%	100%
	db Escherichia coli Escherichia coli Escherichia coli Escherichia coli	dbProtien functionEscherichia coliUsher, YHD fimbriael clusterEscherichia coliOuter membrane lipoprotein, YHD fimbriael clusterEscherichia coliMajor pilin subunit, YHD fimbriael clusterEscherichia coliChaperone, YHD fimbriael cluster	dbProtien functionAccessionEscherichia coliUsher, YHD fimbriael clusterCP042934Escherichia coliOuter membrane lipoprotein, YHD fimbriael clusterCP042934Escherichia coliMajor pilin subunit, YHD fimbriael clusterCP042934Escherichia coliChaperone, YHD fimbriael clusterCP042934Escherichia coliChaperone, YHD fimbriael clusterCP042934	dbProtien functionAccessioncontigEscherichia coliUsher, YHD fimbriael clusterCP042934275730-278210Escherichia coliOuter membrane lipoprotein, YHD fimbriael clusterCP042934278226-279260Escherichia coliMajor pilin subunit, YHD fimbriael clusterCP042934274417-274959Escherichia coliChaperone, YHD fimbriael clusterCP042934275040-275714	dbProtien functionAccessioncontigCoverageEscherichia coliUsher, YHD fimbriael clusterCP042934275730-278210100%Escherichia coliOuter membrane lipoprotein, YHD fimbriael clusterCP042934278226-279260100%Escherichia coliMajor pilin subunit, YHD fimbriael clusterCP042934274417-274959100%Escherichia coliChaperone, YHD fimbriael clusterCP042934275040-275714100%

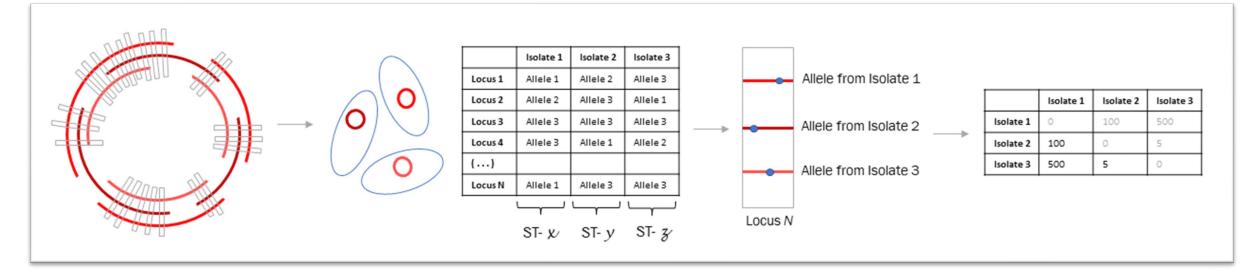
cn_2586_ISEc1

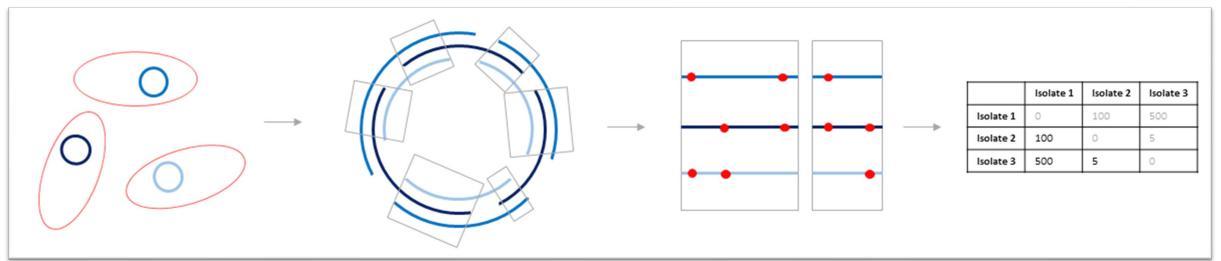
Family	ISAs1
Туре	Composite transposon
Reference db	isfinder
Accession	L02370
Position in contig	363087-365673
Strand	forward
Read depth	4.84
Truncation description	5p truncation: 127 nt
Prediction	Putative MGE
Alignment coverage of flanking MGEs	100%
Sequence identity of flanking MGEs	96.13%
Num Substitutions in flanking MGEs	50
E-value	0
Show MGE alignment	

Thank you very much!

DTU Food National Food Institute

Ana Rita Rebelo anrire@food.dtu.dk


Cluster methods and tools, and the importance of metadata



Gene-by-gene vs. SNP-based analysis

Difficult to achieve harmonised agreement

EURGen-RefLabCap protocol:

- SNP distance under 5 suggests relatedness of isolates, but slightly higher thresholds should not be discarded (e.g. up to 25 SNPs)
- Be aware of method limitations: at least 90% of each query genome should have been included in the alignment to create the distance matrix
- **Differences of 5 cgMLST alleles** suggest close genetic relatedness, but higher values should not be discarded (e.g. up to 10)

Thresholds for genetic relatedness

Other examples from literature:

SNP-based analysis: up to 20 SNP distance

cgMLST: up to 26 alleles difference

- Kluytmans-van den Bergh MFQ, Rossen JWA, Bruijning-Verhagen PCJ, et al. Whole-Genome Multilocus Sequence Typing of Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae. J Clin Microbiol 2016; 54: 2919–27.
- Jamin C, De Koster S, van Koeveringe S, et al. Harmonization of whole-genome sequencing for outbreak surveillance of Enterobacteriaceae and Enterococci. Microb Genomics 2021; 7: 000567.
- González-Escalona N, Kase JA. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010-2017 Ibekwe AM, ed. PLoS One 2019; 14: e0214620.
- Gutiérrez S, Díaz L, Reyes-jara A, Yang X. Whole-Genome Phylogenetic Analysis Reveals a Wide Diversity of Non-O157 STEC Isolated From Ground Beef and Cattle Feces. 2021; 11: 1–12.
- Weber RE, Pietsch M, Frühauf A, et al. IS26-Mediated Transfer of blaNDM-1 as the Main Route of Resistance Transmission During a Polyclonal, Multispecies Outbreak in a German Hospital. Front Microbiol 2019; 10: 1–14.
- Jones G, Lefèvre S, Donguy M, Nisavanh A, Terpant G, Fougère E. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O26 paediatric haemolytic uraemic syndrome (HUS) cases associated with the consumption of soft raw cow's milk cheeses, France, March to May 2019. Eurosurveillance 2019; 24.
- Zhang P, Essendoubi S, Keenliside J, et al. Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production related environments. npj Sci Food 2021; 5.
- Dallman TJ, Greig DR, Gharbia SE, Jenkins C. Phylogenetic structure of Shiga toxin-producing Escherichia coli O157: H7 from sub-lineage to SNPs. Microb Genomics 2021; 7.
- Bush SJ, Foster D, Eyre DW, et al. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. Gigascience 2020; 9: 1–21.
- Yoshimura D, Kajitani R, Gotoh Y, et al. Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-accuracy pipeline: BactSNP. Microb genomics 2019; 5: 1–8.
- Jenkins C, Dallman TJ, Launders N, et al. Public health investigation of two outbreaks of shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl Environ Microbiol 2015; 81: 3946–52.
- Rowell S, King C, Jenkins C, et al. An outbreak of Shiga toxin-producing Escherichia coli serogroup O157 linked to a lamb-feeding event. Epidemiol Infect 2016; 144: 2494–500.
- Ludden C, Coll F, Gouliouris T, et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. The Lancet Microbe 2021; 2: e472-80.
- Roer L, Hansen F, Frølund Thomsen MC, et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J Antimicrob Chemother 2017; 72: 1922–9.
- Dallman TJ, Byrne L, Ashton PM, et al. Whole-Genome Sequencing for National Surveillance of Shiga Toxin-Producing Escherichia coli O157. Clin Infect Dis 2015; 61: 305–12.
- Joensen KG, Scheutz F, Lund O, et al. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J Clin Microbiol 2014; 52: 1501–10.

Tools for analysis

23 September and 10 October. Virtual multidisciplinary training to resolve a CCRE outbreak scenario using simulation exercises. (2 hours each)

Multidisciplinary training workshop engaging a mix of national microbiology experts and health care epidemiology experts.

The training will include exercises on WGS data analysis, including sequence quality control, *in silico* typing and detection of antimicrobial resistance genes as well as cluster analysis. The training will be organised as virtual outbreak exercise to practise and test the capability to use WGS-data in outbreak investigations and interpreting these in relation to the epidemiological investigations.

The first workshop will be divided into two online sessions of approximately two hours. The first session will set the scene, introduce phylogenetic analysis and explain the exercise dataset and setup. After the first session, sequences and exercise material will be shared with the participants and they will have approximately two weeks to work with the exercise. During the second session, a walk-through of the exercise will be presented, and participants can ask questions, show their own results and participate in discussion with other participants and exercise coordinators.

Exercise overview

Presentations Intro and CSIPhylogeny by Jette Sejer Kjeldgaard SNP vs cgMLST by Henrik Hasman MinION typing by Henrik Hasman

Exercise guidelines and questions Exercise guidelines Exercise questions Exercise metadata

https://www.eurgen-reflabcap.eu/activities-and-events/courses-and-workshops

Questions?

James B Pettengill, Austin Markell, Amanda Conrad, Heather A Carleton, Jennifer Beal, Hugh Rand, Steven Musser, Eric W Brown, Marc W Allard, Jasmine Huffman, Stic Harris, Matt Wise, Annie Locas, **A multinational listeriosis outbreak and the importance of sharing genomic data**, The Lancet Microbe, Volume 1, Issue 6, 2020, Pages e233-e234, <u>https://doi.org/10.1016/S2666-5247(20)30122-1</u>.

" By the end of 2019, cluster PDS000011550 in the NCBI L monocytogenes Pathogen Detection database contained 36 clinical isolates with a distinct genetic pattern. The associated illnesses, which included four deaths and six pregnancy-associated infections, began in 2016 and a suspected food vehicle could not be identified from available food exposure histories."

" In February, 2020, the Canadian Food Inspection Agency (CIFA) (...)"

" In late February to early March, 2020, US state and federal partners (...)"

" In the middle of March, 2020, US public health officials (...)"

" In late March, 2020, further testing by the CFIA (...)"

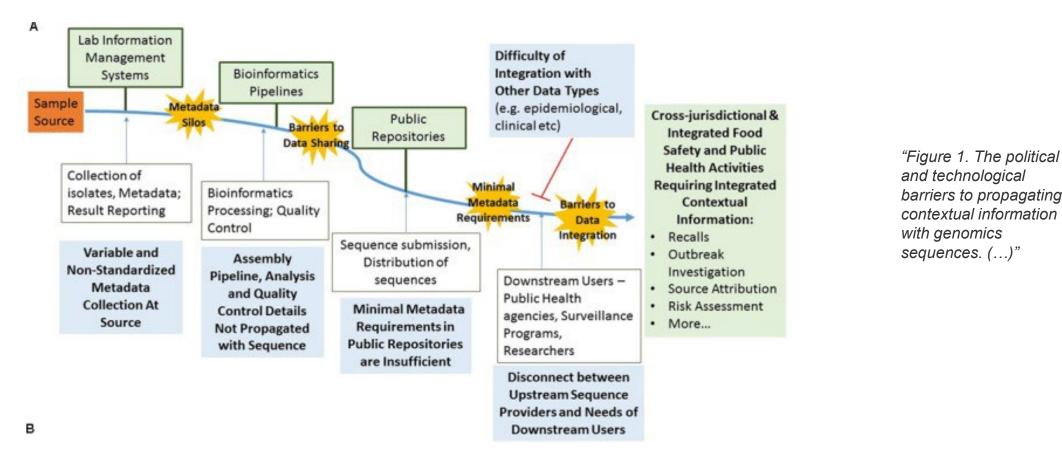
In April, 2020, as part of the US domestic outbreak investigation (…)"

James B Pettengill, Jennifer Beal, Maria Balkey, Marc Allard, Hugh Rand, Ruth Timme, Interpretative Labor and the Bane of Nonstandardized Metadata in Public Health Surveillance and Food Safety, Clinical Infectious Diseases, Volume 73, Issue 8, 15 October 2021, Pages 1537–1539, https://doi.org/10.1093/cid/ciab615

"The 2020 international outbreak of Listeriosis monocytogenes in enoki mushrooms [9] provides a real-life example that illustrates the interpretive labor incurred due to nonstandardized and vague metadata. Public health authorities had been investigating clinical listeriosis cases that were clustered together based on their sequencing results for several years. In early 2020, a sample was uploaded to the public database with isolation source simply as "food." The interpretive labor to more fully describe these isolates required multiple subsequent discussions with the submitting agency to obtain more specific metadata that eventually revealed they were from "enoki mushrooms." The more specific information was later made public. The delay in obtaining this information hindered the epidemiologic investigation as additional time was required to identify enoki mushrooms as the food that was causing human illness"

James B Pettengill, Jennifer Beal, Maria Balkey, Marc Allard, Hugh Rand, Ruth Timme, Interpretative Labor and the Bane of Nonstandardized Metadata in Public Health Surveillance and Food Safety, Clinical Infectious Diseases, Volume 73, Issue 8, 15 October 2021, Pages 1537–1539, https://doi.org/10.1093/cid/ciab615

Table 1.


Number of Samples and Percent of Total Samples Missing a Value for 4 Metadata Attributes for Each High-Level Epidemiological Type Category in the National Center for Biotechnology Information Pathogen Detection Database as of 12 March 2021

Taxon	Epidemiological Type	Isolation Source	Collected By	Collection Location	Collection Date
Listeria	Food/Environmental/Other	431 (4.9%)	1316 (14.9%)	1821 (20.6%)	408 (4.6%)
	Clinical	3742 (42.3%)	1915 (21.6%)	789 (8.9%)	4120 (46.5%)
Salmonella	Food/Environmental/Other	1180 (0.6%)	1537 (0.8%)	2066 (1.1%)	691 (0.4%)
	Clinical	129 372 (67.2%)	135 032 (70.1%)	20 212 (10.5%)	3718 (1.9%)
Escherichia coli and Shigella	Food/Environmental/Other	212 (0.3%)	1153 (1.6%)	2114 (3%)	1038 (1.5%)
	Clinical	1019 (1.4%)	40 037 (56.6%)	43 139 (60.9%)	9768 (13.8%)

The importance of metadata

Griffiths E, Dooley D, Graham M, Van Domselaar G, Brinkman FSL, Hsiao WWL. Context Is Everything: Harmonization of Critical Food Microbiology Descriptors and Metadata for Improved Food Safety and Surveillance. Front Microbiol. 2017 Jun 26;8:1068. doi: 10.3389/fmicb.2017.01068.

The importance of metadata

ISO 23418:2022

Microbiology of the food chain — Whole genome sequencing for typing and genomic characterization of bacteria — General requirements and guidance

What to do?

Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. **The FAIR Guiding Principles for scientific data management and stewardship.** Sci Data. 2016 Mar 15;3:160018. doi: 10.1038/sdata.2016.18.

Black A, MacCannell DR, Sibley TR, Bedford T. Ten

recommendations for supporting open pathogen

genomic analysis in public health. Nat Med. 2020

Jun;26(6):832-841. doi: 10.1038/s41591-020-0935z.

> Timme RE, Wolfgang WJ, Balkey M, et al. Optimizing open data to support one health: best practices to ensure interoperability of genomic data from bacterial pathogens. One Health Outlook. 2020;2(1):20. doi: 10.1186/s42522-020-00026-3.

The importance of metadata

ISO 23418:2022

Section 8 – Metadata

- 8.4 Metadata associated with sample collection
- 8.5 Metadata associated with the isolate
- 8.6 Metadata associated with the sequence

Minimum fields that should be recorded for adequate traceability of isolates and sequencing results:

- Improved quality control over time
- $_{\odot}$ Easier to detect problems in methods that are being used
- Reduced time for outbreak investigation
- Easier comparison of national and international data

o ...

Lunch break

Back at 13:30.

Ana Rita Rebelo and Jette Sejer Kjeldgaard anrire@food.dtu.dk / jetk@food.dtu.dk

Exercise about cluster analysis

Explanation

1) All clinically relevant bacterial isolates were collected from all hospitals in a region in one day

- 2) All isolates were sequenced using Illumina NextSeq 500
- 3) Bioinformatics analysis was performed including:
 - Species identification with rMLST and KmerFinder
 - Prediction of MLST with MLST tool
 - Detection of antimicrobial resistance genes and point mutations with ResFinder
 - Detection of plasmid replicons with PlasmidFinder

4) All E. coli isolates were subjected to cgMLST analysis

- 5) A tree was constructed from those cgMLST results
- 6) Some clusters were identified with genetic distances under 15 alleles of difference

7) Within-cluster SNP distances were calculated with CSIPhylogeny

"proof-of-concept", based on literature finding >5 alleles difference on real-life outbreaks

for each analysis the reference was the bestquality isolate within that cgMLST cluster (almost guaranteed to be more closely related than other publicly available genomes)

Can't use "oldest" strategy to select reference for phylogenetic analysis

Exercise

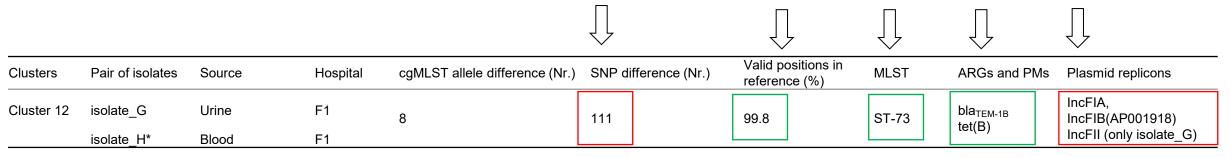
- Evaluate the results from gene-by-gene cluster analysis and from SNP-based phylogenetic analysis in the clusters.
- Discuss and conclude about the results:
 - Are the results of good enough quality to be used? Why or why not?
 - Are the isolates related within the clusters?
 - What can you conclude from the metadata?
 - How would you proceed next?

Exercise

Clusters	Pair of isolates	Source	Hospital	cgMLST allele difference (Nr.)	SNP difference (Nr.)	Valid positions in reference (%)	MLST	ARGs and PMs	Plasmid replicons
Cluster 12	isolate_G	Urine	F1	8 1	111	99.8	ST-73	bla _{TEM-1B}	IncFIA, IncFIB(AP001918)
	isolate_H*	Blood	F1					tet(B)	IncFII (only isolate_G)

Clusters	Pair of isolates	Source	Hospital	cgMLST allele difference (Nr.)	SNP difference (Nr.)	Valid positions in reference (%)	MLST	ARGs and PMs	Plasmid replicons
Cluster 13	isolate_I	Urine	F9	8	2	99.8	ST-968	None	ColRNAI
	isolate_J*	Blood	F9						Col156

Exercise

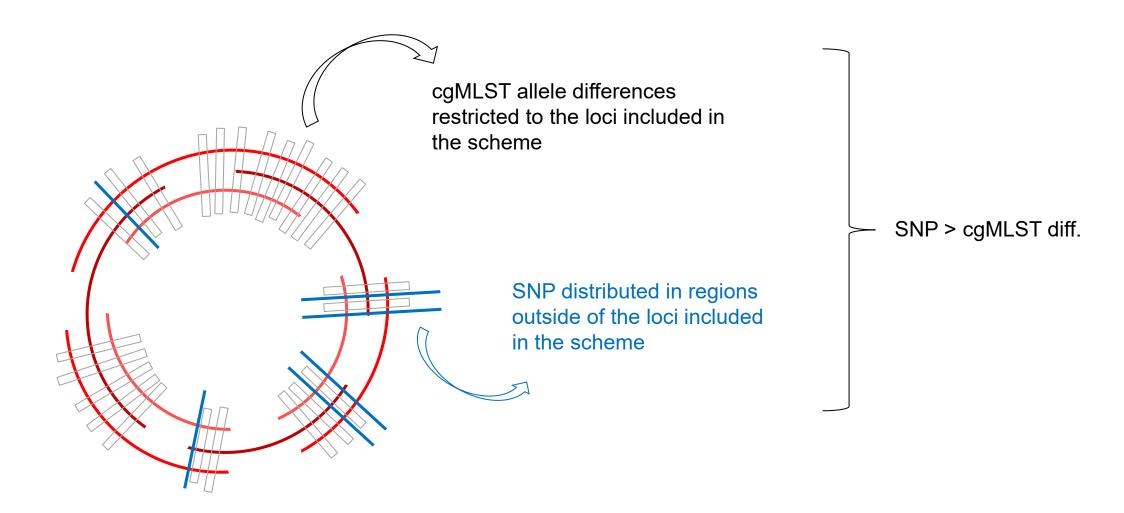


Clusters	Pair of isolates	Source	Hospital	cgMLST allele difference (Nr.)	SNP difference (Nr.)	Valid positions in reference (%)	MLST	ARGs and PMs	Plasmid replicons
	isolate_C	Stool	F5	7	0				
	isolate_B	Blood	F5						
	isolate_F*	Stool	F5	8	0				
	isolate_B	Blood	F5						
	isolate_F	Stool	F5	9	1				
	isolate_C	Stool	F5						
	isolate_A	Blood	F3	10	0				
	isolate_B	Blood	F5						
	isolate_D	Stool	F3	11	1				
	isolate_C	Stool	F5						
	isolate_D	Stool	F3	12	1				
	isolate_B	Blood	F5						
	isolate_E	Stool	F5	12	0				
	isolate_F	Stool	F5				ST-33	bla _{TEM-1B}	Col(MP18) Col156, Col(MG828) IncB/O/K/Z
Cluster 3	isolate_A	Blood	F3	12	1				
	isolate_F	Stool	F5			90.7	31-33	tet(B)	IncFIA
	isolate_A	Blood	F3	13	0				IncFII/IncFII(pCoo)
	isolate_C	Stool	F5						
	isolate_E	Stool	F5	14	0				
	isolate_B	Blood	F5						
	isolate_A	Blood	F3	16	1				
	isolate_D	Stool	F3						
	isolate_A	Blood	F3	16	0				
	isolate_E	Stool	F5						
	isolate_D	Stool	F3	18	1				
	isolate_F	Stool	F5						
	isolate_C	Stool	F5	19	0				
	isolate_E	Stool	F5						
	isolate_D	Stool	F3	20	1				
	isolate E	Stool	F5						

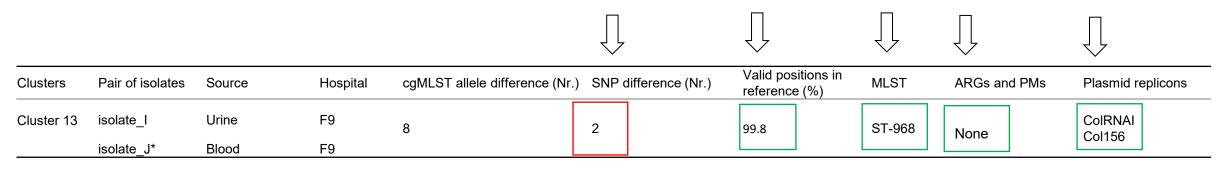
Discussion

Seems like the isolates are not that closely related after all

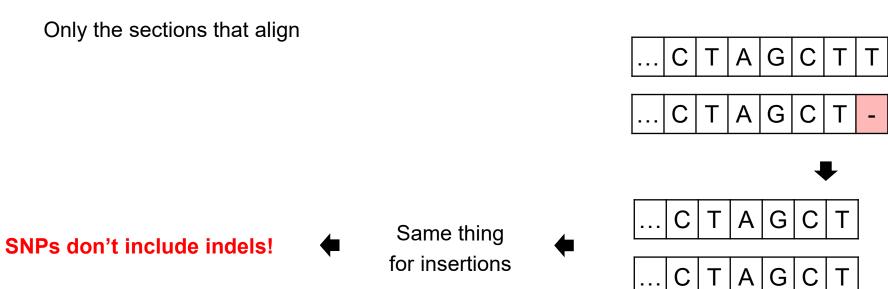
Good quality


No discrepancies Discrepancy

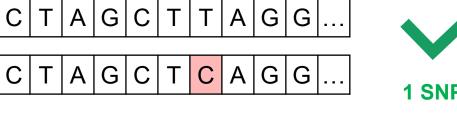
Discussion



Discussion



How can SNP be lower than cgMLST differences?


Good quality

No discrepancies

С

G

G

A G G ...

A G G ...

G

G

. . .

A

A

STATENS SERUM

IN STITUT

X

78

Discussion

DTU

DTU	D	∕iscu	ission				_	_		STATENS SERUM IN STITUT	
			$\bigcup_{i=1}^{n}$			7	\bigcup		$\bigcup_{i=1}^{n}$	\bigcup	
Clusters	Pair of isolates	Source	Hospital	cgMLST allele difference ((Nr.) SNP		Valid positions in reference (%)	MLST	ARGs and PMs	Plasmid replicons	
	isolate_C isolate_B	Stool Blood	F5 F5	7	0						
	isolate_F* isolate_B	Stool Blood	F5 F5	8	0		-				
	isolate_F isolate_C			9	1	Very closely	y related				
	isolate_A isolate_B			10	0		-				
	isolate_D isolate_C		Not	11	1		-				
	isolate_D isolate_B		enougn netadata:	12	1		_			·	
	isolate_E isolate_F			12	0		98.7 S				
Cluster 3	isolate_A isolate_F		No	12	1			ST-33	bla _{TEM-1B} tet(B)	Col156, Col(MG828) IncB/O/K/Z IncFIA	
	isolate_A isolate_C		ctionable	13	0	Gor	t od quality		IncFIA IncFII/IncFII(pCoo)		
	isolate_E isolate_B	cor	nclusions	14	0		- • •	Nc	o discrepancies	;	
	isolate_A isolate_D	Ī		16	1		-				
	isolate_A isolate_E	вюоа Stool	F3 F5	16	0		_				
	isolate_D isolate_F	Stool Stool	F3 F5	18	1		-				
	isolate_C isolate_E	Stool Stool	F5 F5	19	0		-				
	isolate_D isolate_E	Stool Stool	F3 F5	20	1		-				

Ana Rita Rebelo anrire@food.dtu.dk

Questions and wrapping up the day

Please complete the feedback survey about this workshop

https://ec.europa.eu/eusurvey/runner/EURGen-RefLabCap_technical_training_workshop_2022

EURGen-RefLabCap@food.dtu.dk

Thank you on behalf of the EURGen-RefLabCap team

